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. tion 1

INTRODUCTION

In order to neet the increasingly restrictive budgetary and schedule W

constraints imposed on aerospace vehicle development programs, considerable

ettention has been devoted in recent years to automation of the aircraft

design process. This effort has largely focused on the refinement and inte-

gration of e;:isting analysis tools (e.g., see References 1-1 and 1-2). At

the same time, some significant advances have been made in the development

of automated redesign procedures as a further means of accelerating the

the design cycle (e.g., see Reference 1-3).

The computer program described in this report falls into both of these

categories. Its capabilities encompass integrated interdisciplinary anal-

ysis as well as enhanced automated redesign for aircraft lifting - surface

structures. The analysis capability includes loads prediction, structural

analysis, vibration mode determination, and flutter analysis. The redesign

procedure minimizes the weight of a lifting - surface structure in the

presence of combined strength and flutter-speed constraints. The entire

program is known as FASTOP, for Flutter And STrength Otimization Program.

Before describing the specific features of this program, it is valuable

to review some of the background and objecti-ies which governed its devel-

opment.

The strength analysis and redesign module in FASTOP was developed.

several years ago under a contract sponsored by the Air Force Flight Dynamics T.
Laboratory. This program, known as ASOP (Aitomated Structural ptimization

Erogr.m), automatically resizes the gages of a finite-element structures

model to achieve a fally stressed (near-miniwam-weight) design for spec-

ified design load conditions. Prior to the advent of automated strength

resizing procedures, the stress analyst was faced with the time consuming

task of computing element stresses based on the results of a finite-element

analysis, and then manually resizing the preliminary gages of the structures

model. This process bad to be repeated until an acceptable design was

achieved. Consequently the automated r-sizing capability in ASOP has resulted

in a significant reduction in the time required for the strength design of

airplane structures.

1!I



The major objective in developing FASTOP has been to integ-ate the K .
aforementioned strength redesign program with a new automated procedure for

minimum-weight resizing to satisfy a flutter-speed constraint. This require.

ment originated from the obvious inefficiencies in existing flutter preven-

* tion procedures, wherein the flutter analyst relies largely on judgement in

.ursuing an adequate flutter "fix". Such an approach often leads to many

trial and error studies which are particularly inefficient because of the non-

automated interface between the flutter analysis and structural analysis

* procedures. That is, any stiffness change to be considered in the course of

a flutter investigation must be evaluated through manual changes to the input

data of the structural analysis program. New stiffness properties, vibration

modes, and a flutter speed are then computed on a step-by-step basis via

individual computer programs. The time required for each of these tasks

and the number of "fixes" to be evaluated obviously increase in proportion

to the complexity of the structures model under investigation.

Automation of this interactive strength/flutter redesign process has

been accomplished in FASTOP, pruviding the user with redesign capability

for small-or large-scale structures models. Moreover, the flutter redesign

procedure, which evolved from an extensive evaluation of candidate app-

roaches, has been demonstrated to achieve a minimum-weight redesign for

flutter-critical configurations. • .

This report describes the various analysis and redesign procedures

included in FASTOP. Results obtained from the analysis end resizinp

of three sample structures are also presented. After first providirg

an overview of the entire FASTOP system, each of the major enalysis

and redesign functionb is discussed in a separate section. it will

be noted that the depth of detail varies in each of these sections.

Where adequate documentation of well-known methods already exists,

as, for example, in the discussion of the structural analysis methods,

considerable reliance is placed on this documentation, and the discussion

only summarizes the procedures. On the other hand, *,ven though some

other techniques are already documented, it is felt thN they may te

less familiar to the reader and that he would benefit from having them

discussed in detail and included in this volume for completeness.

In other instances, where the analysis capability provided in a parti-

2
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cular discipline extends into areas beyond the original intended scope of

this contract) as, for example, in the considerationi of wirng-body aero-

dynampic interference and in the computation of divergence speed in the
flutter analysis section, t6ily a brief discussion of theae ftatures is

included.
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Section 2

OVERVIEW OF THE oASTOP SYSTEM

The FASTOP system provides capability for the analysis and near-minimum-

weight structural sizing of a lifting surface to meet strength and flutter-

speed requirements. A functional flow diagram of the system is presented in

Figure 2.1. The package is comprised of two major programs, each one designed

to perform succe&,:!ve analysis and resizing functions in a single computer

submission. The ktength optimization Zrogram (SOP) focuses on basic aspects

of static structural analysis and minimum-weight design for strength require-

ments. It provides for automated calculation of applied loads, performanc-e

of conventionel strength and flexibility (or stiffness) analysis, and autc,-

mated resizing of a structural idealization to achieve a fully stressed de-

sign.. It also prepares data required for direct input to the second major

program. The lutter _Optimization I~rogram (FOP) addresses dynamic analysis

requirements and provides the redesign capability for achieving a desired

valui of flutter speed with minimum cost in weight. Using output data from

the first pr6ram, it proceeds to establish mass matrix input for vibration

mode-analysis, compute normal mode shapes and frequencies, determine the
suri..ze's critical flutter speed, and perform resizing if desired to in-
crease flutter speed. Finally, the second program saves data require-i for

re-entering SOP.

The use of this two-program approach for redesign proceeds as follows.

First, using SOP, the structure is sized to satisfy its strength requirements

with a fully stressed design. The structural elements after this step can be in

either of two categories - fully stressed (i.e., strength-critical) or at a

prespecified minimum gage (as dictated, for example, by manufacturing consid-

erations). Then, using FOP, resizing of structural and/or mass-balance

variables is performed to increase the critical flutter speed of the surface.

No structural elements can be reduced in this step, since this would cause S
them to fall below the gages previously required by SOP. The structural

variables that are increased in the second step, plus any mass-balance variables

that have been specified by the user, constitute an Anitial set of "flutter-

critical" elements, i.e., elements whose sizes have been dictated by flutter-

speed requirements. The structural variablea that have been increased by FOP

are now removed from the previous strength-critica. eand minimum-gage categori.es.
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Since the reslzing of certain structural elements to achieve an increase A

in flutter speed may alter the internal load distr~butions and therefore the

resulting gage requirements for strength consideiations, SOP is now re-

entered. Thii is the first step toward achieving a minimum-weight design

accounting for strength/flutter interaction. In t.is step, no flutter-critical

element, and of course no element at the prescribed minimum gage, can be

resized downward, but the remaining elements, which constitute the newly

defined set of strength-critical elements, can be either decreased or increased.

Again, a reclassification of the various elements into stilength-critical,

flutter-critical, and minimum-gage categories takes place. For example, if

a previously flutter-critical element is resized upward to meet strength

requirements, it is now moved into the strength-critical set; similarly, if

a previously strength-critical element can be reduced in weight until it reaches

its prescribed minimun gage, it is now p't into the minimum-gage category.

At this point, FOP is entered for the second time, and the strength/

flutter interactive redesign continues. The resizing that can take place in

this second pass through FOP is more flexible than that which occurred the first

time, in that nov there is a set of flutter-critical structural elements that

can be resized either upward or downward. Any downward resizing cannot violate

the values required by strength or minimum-gage considerations, however. As

bffore, elements in the new sets of strength-critical and minimum-gage

variables can only be resized upward, and if this occurs they are reclassified

as flutter-critical.

Subsequent interactive application of the two programs proceeds in a

manner similar to the second passes until, in the opinion of the user, the

process is sufficiently converged. The final design will consist of a set of

flutter-critical elements which have nearly uniform flutter-velocity derivatives,

a set of strength-critical elements hich are fully stressed, and a set of

elements which are at the user prescribed minimum gages.

While it is felt that the two-program approach provides the most logical
"stop points" needed by the user for appraisal of intermediate results and

possible revision of redesign step-size control parameters, it is still possible

to use a iultiple-step option to exercise the analysis and redesign functions

of both programs without interruption. It is also noted (as indicated in

Figure 2.1) that provision is made to exit either program after performing

% 6
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xpecific analysis or redesign functions, thereby affording the user the oppor-

tunity to monitor the results even more closely or, if he wishes, exercise -

individual portions of the system independently. Finally, if a user observes

that flutter resizing occurs in a vry local area with only minor interaction

with, strength requirements, the flutter resizing progrwi can be used several

times in succession, using coupled-mode flutter anal3ts, before returning to

atother strength resizing step. In this situation it is recommended, however,

that SOP be used in an analysis Lode to compute a new flexibility (or stiffness)

matrix for a new normal-mode calculation after each reuizing step; if coupled

modes are used, the accuracy of the flutter-velocity derivatives deteriorates

rapidly, and improper resizing steps can result.

In both programs, considerable emphasis has been placed on the mcdular

programming concept, so that the system's capability can readily be extended

in the future. The analysis and redesign functions of both programs are

performed with the following six modules:

* Applied Loads

* Structural Analysis and Resizing

0 Transformation Procedure3

0 Vibration Analysis (Including Mass Matrix Definition)

0 Flutter Analysis

0 Flutter Resizing

The capabilities of the individual analysis and redesign routines are briefly

summarized below:

Applied Loads

Aerodynamic

Maximum number of flight conditions

(subsonic and/or supersonic) 8
Maximum number of control surfaces 8
iS
"ximum number of aerodynamic panels 100

Inert .al

Maximum number of flight conditions 8

Maximum number of distributed (point) masses 1000

Maximum number of concentrated (ruass and inertia) masaes IOC C

£7
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I

Structural Analysis and Resiting

Primarily for metallic structures (limited composites capability) S

Maximum allowable number of finite elements ..

to define the structures model 3000

Maximum number of structures model node points 1000

Maximum number of structures model degrees

of freedom 6000*

.axim=u number of applied load conditions 8

Vibration Analysis

Maximum number of dynamics model degrees

of freedom 200

'Flutter Analysis

Assumed-pressure-function and doublet-

lattice routines for subsonic flow M--0.9 5

Mach-box routine for supersonic flow M=1.23.0

Maximum number of modes for flutter analysis 20

Maximum number of control surfaces on main

surface for doublet-lattice and Mach-box routines 5 *
Maximum number of aerodynamic panels:

Doublet-lattice 400 1 "

Mach-box 350

Flutter ResizJng

Maximum number of elements which can
be resized for flutter:

Structural elements 2000

Mass-balance elements 20

The following sections describe the theory and procedures

in each pmgram module. Each section begins with a brief summary to enable

the reader to quickly grasp the intent of each analysis and to understand

its relationship to the overall system.

*Reduces to 3000 if subsequent flutter resizing uses a free-free vibration

model; unchanged for cantilever model.

8
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Section 3

APPLIED LOADS ANALYSIS

3.1 SUMMARY

* The applied loads analysis module provides the capability for compating

aerodynamic and inertial loads for specified maneuver conditions. The aero-

dynamic forces ,are comwuted by modeling the lifting surface with a distribution

of vortices for subsonic flow or with a distribution of sources for supersonic

flow. For flight conditiona expressed in terms of vehicle load factors and

angular acceleration, and velocities, inertial loads are computed at a grid-

work of concentrated and distributed msses. The aerodynamic and inertial

forces are then transformed from their respective math models to the structures

model using transformations computed in a separate transformation analysis
module described in Section 5. FASTOP also provides the c&pability for the
direct input of known loads in the structures model.

3.2 AERODYNAMIC LOADS

To obtain surface aerodynamic forces, the planform is subdivided into

an arbitrary number of small trapezoidal panels (not more than 100) in a

fashion dictated by the overall planform geometry and the locations of the

control surfaces. The number of panels in the chordwise direction can vary

over the span. Using the same panel geometry for all Mach numbers, aero-

dynamic influence coefficients corresponding to these panels are computed and

stored on tape using either subsonic vortex-lattice theory (Reference 3-1) or

the supersonic source distribution theory (Reference 3-2). For subsonic flow

only, the effect of a fuselage on the lift on the wing can be modelled in

this program using the method of images. By multiplying the aerodynamic

influence coefficients by prescribed dynamic pressures and downwash distribu-

tions, the forces are determined for the selected loading conditions. Pro-

vision for various correction factors is included.

9
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vortices is placed .sn the surface of a planform, the re-Iting dowwash at

iny point, P, is rej.ted to the circulations of the vortices by:

w (pa) ij]Y(P) K(P~ P, M) dS, (3.1)

where

P is any point on the planform with coordinates ~ 1

P' is a j thpoint w"O coordinates x, y, z

X1 are streamwise cowxdinates

y, 1are spanwise c'oordin~ates

z, are vertical coordinates

S is the surface

w is the downwash angle

wis the downwash velocity

UJ is the free stream velocity

y is the circulation

M is the Mach number

K is the kernel function representing the downwash created P.t a poirnt
due to a unit circulation over a unit area of a vortex sheet.

From the Kutta-Joukowsk' theorem, it is known that circulation can be related

to the lift and, hence, to the pressure coefficient, C . Consequently, the
p

~above equation can be written

w (P9 C (PJfc( P, M) dS. (.%

ff p

10
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In the present method, the given surfact is divided into a lattice of I

panels, the sides of which parallel the free stream (see Figure 3.1) and over

each of which the pressure is, assuned constant. Equation (3.2) becomes

(P) i C!Pi fJK(P,, P, P4) is. (3.3)

With the further assumption that the vortices in each panel are condensed to

a single horseshoe vortex, the bound portion of which l * s at the quarter chord
of the panel, the equation redu,:es to

w (P), C K P P , ) dS, (3.4)!, w ). -Pnel i

thwhere &Ci is the average chord length of the i panel and the integration is
thtaken along the quarter-chord of the i panel. Using the Biot-Savart law,

the final integral is evaluat, d in Reference 3-3, yielding

f K(P j, P j) , M) ds. E F i + Gi, (3.5)
Panel i

where

SEi is the downwash at point J induced by a horseshoe vortex of unit

strength and length at panel i

F i is the contribution to E i due to the trailing vortices

G A is the contribution to Ei due to the bound vortex.

; If it is desired in determining the pressure distribution on a wing to

account for the effects of the presence of a fuselage, this is accomplished as

in Reference 3-4 by in"luding within the fuselage an image of each horseshoe
vortex on the wing (see Figure 3.2). In this idealization, the fuselage is

ausumed to be a circular cylinder of radius R and the image of a point (x, y)
is located at (x, R2/y). The downwash induced by the point and its image is

ip

Et+ (3.6)
-~ (Fi + 0c + G) C + Y%36
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where F',, and G'J are due to the im~age and where the correction factor,L

dimensiunal theory.

Ig y

i ay

x Y~i A-1y,

Figure 3.2. Cylinder with a Pair of Horseshoe Vortices
and their Images.
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Substituting the ap~propriate value of E ji for the integral in Equation OA.), f.. ,
one obtainsi a i ao i

w (P) i cEji. (37),

If a point P is chosen at the 3/4-chord and midapan of each of the I panels and
the above equation is ,applie at each such point, a iystem of simultaneous

linear equations results, which in matrix notation is

w AJ [E] f{C1. (3.8)

This system "-n be solved for the pressure distribution:

From this equation, an aerodynamic influence coefficient matrix cau be

defined as

[IC (3.10)

The downwash angle distribution, (w), used in Equation (3.9) can be con-

sidered to cnsist of contributions, (w1 ], due to the rigid surfaces inclina-

tion to the free stream and contributions, (w2 , arising from the deflections

of any control surfaces on the surface. The first of these contributions is

comprised of three terms

[wl  ( , e I + k 2 (*21 + k3 ( 3 , (3.11)

where

[Ce is the effective angle of attack of the surface optionally in the

presence of a fuselage

is the distribution of local incremental angles of attack due to
! camber and twist

I
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(aj is a distribution of additive corrections to the local incidencesI

based on empirical or experimental data

k kIc3 are scalar correction factors also based on empirical or experi-

The effective angle of attack equals the sum of tne geometric angle of attack

of the wing rs.lative to the fuselage and terms due to the fuselage's inclina-

tion and the upwash induced by this inclination.

,- 1  I) + of Cl + /?/y2] IcI1  (1), (3.12)

where

al is the geometric angle of incidence of the wing relative to the

fuselage reference line

f fi3 the angle of attack of the fuselage reference lire

R is the mean radius of the fuselage

y is the spanwise coordinate of the panel of interest measured from

the fuselage centerline

k l.. are scalar corrections factors.

The contribution to the downwash due to N control surface deflections is

(w2) N L,nn UC2n +k4  (6,n)

U+ ]R,n [Uln + k4 (82) 3.13)
n= n n "

where
N is the number of control surfaces

th
5L, 6 R,n are the rotations of the n left and right control surfaces
O R respectively

th
(U)n are fractions (0 Uj,n l) denoting the portion of the j

aerodynamic panel that lies on the nth control surface.

(6] are additive -orrections to the local rotation of the nth

control surface

C2n, k are scalar correction factors.
n4n

15
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It should be noted that, in the absence of any correction factor, theI downwash distrib:ation on a wing without fuselage or control surfaces is quite

* simple, namely (w) = a1  il + [w

.4 3.2.2 Supersonic Influence Coefficients

In supersonic x'low, aerody mic influence coefficients are obtained as

described in Reference 3-2 using'a distribution of sources. The pressure at a

point on a planar surface is related to the velbcity potential and, thence,

to the downwash by

p U bx tbfi
S

C
p is the pressure coefficient

Pj is a jth point with coordinates x and y

x and are streamwise coordinates

y and q are sparwise coordinates

U is the free-stream velocity

is the velocity potential

w is the downwash angle at g, 0
R

p2p--

M is the Mach number

S is the area of integration bounded by the invere Mach cone

emanating from (x, y).

For a surface with supersonic leading and trailing edges, the area of

integration is bounded by the leading edge (see Figure 3.3a). Near a side

edge of such a surface, however, the potential is influenced by a region off

the wing as indicated by SD in Figure 3.3b. For such a case, Reference 3-5

shows that the effect of this off-wing region is to negate the contitbution of

the on-wing region S' delimited by the leading edge, the side edge and the

reflected Mach line. Consequently, only the shaded area Sw need be considered

for the integration in Equation 3.13.

16
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~Inverse

/'n~rerae Mach I,

x ,y

(a) Interior Point

IMaerh Reflected/

LineLineInverse

Mach
Line

SD

Tip0

Mach
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Line

(b) Point near the Tip

Figure 3.3. Areas of' Integration on a Wing with Supersonic Leading and
Trailing Edges.
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This concept can bt extended to the case of subsonic leading edges.

Referring to Figure 3.4, the areas; between the foremost Z'ach waves, OH' and
OD' and the wing leading edges, QEB and OCR), will affect the potential and

cacel the influence of the regions EEC, EPH, etc. ahead of the reflected
Aaich lines 9C, EF, etc. Thus, the areas to-,be considered in the integration
are the successively forward quadril.iterals ABCD, CEFO, etc.

US

0

E .01

*Foremost G
Mach F

LieE C GD' Foremost* *

Figure 3.4. Integration~ Areas for a Wing with
Subsonic Leadl~ng Edges.
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1-< eturnibg to -;dttlo (3.14) and performing the differentiation indicated,

~ne--obtatn~

dVa + dp q (3.15) C

which can be simplified to

Sc( 2- PJ) 2ffd w d1 * dl. (3.16)
S L.E.

In the above equations, T. E. and L. E. signify that the line integral is to

be evaluated along the trailing and leading edges of the area, S, respectively.

To evaluate the above equation, the planform is divided into a number of

trapezoidal panels, as was done in the subsonic case. Over each panel, the

downiash is assumed to be constant. Consider a typical panel and its neighbors

as depictd in Figure 3.5. The contribution to the pressure at (x, y) of the

wedge aft of AflC is

= dw _gdq + ' ,

IACG 17 jg R T

ACG ABC i .

ffJ+$ f JffJJff (3.17)

ACO ABC ACFD DFG B

The contribution from the wedge aft of DEF is

' I~DFC + •(3.18)"'

DFG DEF FI
Subtracting these two eqaations, one obtains the contribution of the strip ACFD:

IACFDff + . - . (3.39)

ACFD ABC DEF

19

, .' - , C , ...
°

.,

a a a a * ~ ' 7-77



P -

Leading Edge V
BS

Figure 3.5. Planform Divided into Panels.

This can be broken up into the contributions associated with panel i (shaded in

Figure 3.5) and those associated with its spanwise neighbor(s). For panel i,

one has:

i fr+ f f-f -f (3.20)

AED AB DE L.Ei  T.E i

where orly those portions of Si, L.E.i and T.E.i that are within the Mach cone

are considered. Since the downwash is assumed constant over each panel, the

surface integral in Equation (3.20) equals zero and the net resmilt involves

only line integrals along the leading and trailing edges. Hence, Equation

(3.16) becomes:

20
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C%(P 4) U2 d1 w .... (3.21)

where m is the number of panels within the Inverse Mach cone. The remaining

integrals~are easily evaluated, since the equations for the panel leading end

trailing edges are those of straight lines.

For thin airfoils, the magnitude of the dovnwash on both sides of the

surface can be assumed equal to the local angle of attack of the mean surface.

Hence, the net pressure coefficient is, merely, twice the value given in Equa-

tion (3.21) with the downwash evaluated using Equation (3.11). Fuselage effectc

are not included, however, since the formulation given previously is not

adequate for supersonic i3lov.

Denoting the two line integrals in Equation (3.21) as Aji , the net pressure

becomes

CPj) wiAi + E i .0, (3.22)
{W

where n is the total nuaber of surface panels and the second sumation (equal

to zero) contains those panels not within the inverse Mach cone emanating fron

P . Applying Equation (3.22) to the ccnter of each panel, one obtains (.3

P -AIC] w ,(3.23) '

i where
hr[ C] [A] (3.24)

The downwash distribution to be used in Equation (3.23) is specified in accor-

dance with Equations (3.11), (3.12), and (3.13). It is noted that the fuse-

lage radius, R, must be entered as zero for supersonic loads analysis.

21S
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3.2.3 Aerodynamic Forces

For a g- metrically symmetric planform, pressure coefficients are computed

for the left :lf only, based on an appropriate combination of symmetric and
antisymetric aerodynamic influence coefficients and the specification of the

total (gener&ly asymmetrical) downwash angle distribution in terms of sym-

metrical and kntisymmetrical components:

{ P [ (AICy 1w1, + ,AC].niitw . (3.25)

,ym. sym.

where

1 n -" [wl., + MiVR]

1w~ati_ i 11 - i W R]
sym.

and L and R denote the left and the right halves, respectively, of the

symmetric plarform. With the pressure coefficients determined, the total

aerodynamic force on each panel is simply

(r}= 2[S] {Cr (3.26)

where p is tre sir density and S is a diagonal matrix of panel areas.
Using the procedures described in Section 5, the aerodynamic forces are

finally transformed from the aerodynamics model to the structures model.
S

I 7

S

S

22

'N Y

• ' ,4,. ... ,, '

. o I) ... . ;i . . . l ......... ......... ..< .O .. .... . .. ..... ) ,,., ..... . ... .. II . l : .. . .. ...,9 ,. .. ..4).91



3si3 D'RTAlOberts principle, rigid-body inertial forces and moments at a
point on a body can be written as

arnd -M H + w xH. (3.27)

where

F is the inertial force vector

H is the inertial, moment vector [
r in the position vector locating the origin of the reference axes

on the body

u~ is the mass of the point

w is the angular velocity of the reference axes

p in the position of the point relative to the reference axes

H is the moment of momentum of the point. A
Expansion of these equations yields

iP s (xi -x 0) (e + 
2 Mi + (Y±-yo) 6R PqI ai

-(xi -x0) (PQ +R) mi-g N m,

23



F _IZ, U "( l -z 0o a)h (s-=)( RP) mi ':j

- V6) (QR + -i - ,

q = -I - , I , (PR - )Iy (PQ +R)

-I r2 4)q

-I' (M "2 ) "(Ixx, IZZ' ' ) Ip
yzxi yx

mzi = "1 zz, i R z (RQ- P) + Izy ' i (RP + Q)

-I - , i (I " " , i " I, d P , (3.28)

where

g is the acceleration of gravity th

xi' Yi zij m1  are the coordinates ond mass of the i point

Ixx il , etc. are the inertia properties about the center ofgravity of the ith point

N NN are load factors
x y z~

P, Q, R are x, y, z components of the nngular velocity, w, respectively

Xo' Yo, Zo are the coordinates of the reference point (usually the center
of gravity of the airplane).

24
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There are two types of mass data that the user may provide for inertial

load computations. The first type, termed "distributed masses", are simply

point masses vith no rotational inertia properties. Thus the output of the (
inertial loads routine for distributed masses consists only af forces st the

center of gravity of each mass item. Distributed masses are most typically

used to define the mas of the finite element structures model (including

non-optimum factors where appropriate) and are logically assigned to struc-

tures model node points. The inertia properties of the structure are im-

plicit in the node point mass Istribution. The second type of mass data,

referzed to as "concentrated masses", have both mass and inertia properties.

In this case the inertial loads routine computes inertial forces and moments

at the center of gravity of each mass item. Concentrated masses are used

to represent large masses such as engines, stores, etc.

The computed inertial loads acting at the centers of gravity of the

various masses are subsequently distributed to the nide points of th,;

structures model using the transformation procedures dcacribed in Section 5.

3.4 PROVISION FOR DIRECT INPUT OF APPLIED WDS

For non-maneuver loading conditions (e.g., landing or gust loads) or

maneuver loading conditions for which applied loads have been determined

directly from test data, separate loading conditions consisting of forces

at structural nodes mey be prescribed by the user.

25
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Structural analysis and strength resizing capability are provided by I  i',

utilizing the Automated Structural Optimization Program (ASOP) deseribed in

detail in Reference 4-1. The analysis procedure employs the matrix displacf-.

ment method"-to obtain nodal deflections and internal element corner forces.

The corner forces are then converted into forces that are equivalent to those
obtained by the matrix force method, and these are subsequently transformed

into representative element stress levels. Resizing for strength requirements,

in the presence of minimum-gage constraints, is accompl3.shed through the itera-
tive use Of ratios of actual-to-allowable stress to satisfy the fully-stressed-

design optimality criterion.

The following paragraphs provide a summary of the finite elements that :

can be used in a structural idealization within FASTOP. The basic aspects of

the overall structural analysis procedure are briefly reviewed and the humeri- .. "

eel method for solving the structure's load/displacement equations is presented.

Further discussion of the redesign aspects of ASOP, in the context of the corm-

bined strength-and-flutter optimization problem, is given in Section 10. ,

4.2 SUMMAY OF AVAILABLE HTE EMOM

The finite elements available for structural modeling are those that are' ,

commonly used in major structural analysis involving metallic construction. :

With the excepticin of the plate elements (i.e., the bending triangle and the

bending quadrilateral), all of the elements in the following list have stiffness

characteristics that are directly -proportional to their weight, thus making
them sva'lable for resizing in FASTOP. Plate elements should be used for anal-
ysis only. The elements, which are discussed in Reference 4-1, include

9 a uniform bar element

* a uniform beam element having constant radii of gyration in its cross-

section

* an anisotropic triangular membrane element I

26-

" . ",, , x: .; ',7 7 " , " '- ..--- • . .. ..

- - - , w
, " ?g, , ¢ • . ... ,



* an anisotropic planar quadrilateral membrane element

a quadrilateral warped or planar shear panel element

•an anisotropio warped quadrilateral membrane element

a hinged beam element

* an anisotropic bending triangle element

* an anisotropic bending qsdrilateral element

0 a combined tria.-ular membrane and bending triangle element

* a combined planar quadrilateral membrane and bending quadrilateral.

4.3 REVIEW OF ANALYSIS PROCEDURE

In applying the matrix displacement method, the analyst first establishes

a structural idealization comprised of the above elements, and representing,

as closely as possible, the actual topological. arrangement of the primary

structural members. The required input dta is then classified into groups

defined as: nodal geometry, member duta, boundary conditions, material tables

and applied loads. The member data contains both topological data plus member

* sizes. Using this information, the program assembles the total stiffness

matrix [K] by superimposing the element stiffness matrices compatible with a

global coordinate system. That is,

n
(K] E ct k3 (4.1)

i=l '

where is a ?unction of the design parameter t, and [ki] is the expanded

element stiffness matrix for a unit value of that design parameter with the

* appropriate boundary conditions applied to it. The [ki matrices are calculated

only once and stored. In succeeding redesign cycles they are multiplied by the

nle., design parameter and reassembled to form the new [K] matrix.

Applied forces for the various loading conditions are entered by referring

them to the node point at which they are applied and to the global coordinate

direction in which they act. The forces are then transaormed to correspond to

* a degree-of-freedom numbering scheme associated with the free degrees of free-

dom in the idealization. The resulting load matrix, IPJ, is then one in which

27

.-.

* I . _ . . . L ; . ..



the rows correspond to the degrees of freedom and the colwans correspond to

loading conditions. The equations of nodal equilibrium are thus

[K)]61 = [P], (4.2)

where [A] is the matrix of nodal displacements. This system is solved by

using a modified version of the Cholesky algorithm (discussed in the next sub-

section) and the resulting displacements are then converted into element corner

forces, [q], by

q] - CS13N, (4.3)

in which CS) embodies both element stiffness matrices and appropriate force

transformations from a global to a local element coordinate system.

The procedure adopted for defining internal stress levels is the "nodal

st"ss method" described in References 4-1 and 4-2. This procedure first con-

verts the element corner forces, [q!, into a new system of forces that are

equivalent to those obtained by the matrix force method of analysis (i.e., cap

loads and shear flows). Then, an approximate strain-compatibility relationship

is used at each structural node point to determine the states of stress at the

corners of each finite element. Representative single values of stress are S m

then computed at each corner for use in a stress-ratio resizing formula that

relates this value of stress to its allowable.

4.3.1 Solution of the Load/Displacement Equations

The solution of Equation (4.2) is accomplished by employing the Cholesky

algorithm for decomposition of positive-definite symmetric matrices (see

Reference 4-3). This technique is also used elsewhere in the FASTOP system

(cee Sections 7,8). The overall solution procedure involves the following

steps:

First, factor [K] by the Cholesky algorithm such that

[K] = [LIT , (4.4)

where [L] is a lower r.riangilar matrix. The procedure for obtaining [Ll is S
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based up, ' lefining relationship, Equation (4.4), and the positive-definite

symmetric .ature of the stiffness 'trix [K]. It first involves the calculation

of elements in the first columr, iven by

/kl/
A i =  

il,

1A1 - k1 1 Ajl 1>I.

where the A's and k'e are the elements o [L] and [l], respectively. There-

after, each successive column of [IU is computed with the following recursion
formulae:

ii

i ii m (kii" 4ir / 1

r-
J-1

hi (k ij Air jr )1Aii ij

S r=l

Equation (4.2) may now be rewritten as

T[)CUJ Ca) , [P1. (4.5)

In the second step, define [ZJ U [[ and solve

[IU]Z) - [P] (4.6)

for [Z] by successive substitution, starting with the first equation and pro-

ceeding downward.

For the fino. step, solve

[L][T] [z]

for the displacement, [4], by successive substitution, starting with the last

equation and proceeding upward.
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Section 5 _

TRANSFORMATIONS BETWEEN MATMATICAL MODEIS i
5.1 SUMMARY

Because different mathematical models are employed in performing the major

analysis tasks required for the design of a lifting surface, it is necessary, in

an integrated system, to provide automated methods that transform data obtained

with one model into a suitable form for use in another. The transformation of

aerodynamic and inertial applied loads into structural node forces is achieved

by using fully butomated "load-beaming" procedures that rely on assumed load

paths. These same procedures, with some added special capabilities, also pro-

vide a basis for establishing a method that transforms flexibility and mass data,

defined in terms of P structures model, into a form for use in vibration analysis.

5,2 DEFINITION OF REQUIRED TRANSFORMATIONS

To perform the analyses required for the structural design of a lifting

surface, four distinctly different mathematical models are usually employed.

For determining applied aerodynamic loads, an aerodynamics model provides a

regular planar distribution of points at which angles of attack are specified b 0
and forces normal to the plane are calculated. When rigid-body inertial loads

are being considered, a welqhts model is defined, comprised of lumped-mass points

representing both structural and nonetructural (i.e., leading- and trailing-edge

assemblies, fuel, actuators, etc.) maus items. A structures model, used to de-

fine internal load distributions and elastic flexibility, consists of an assem-

blage of finite elements representing the actual arrangement of primary struc-

tural members. To determine the surface's modes of vibration for subsequent

flutter analysis, a dynamics model is defined. This model consists of lumped

masses having degrees of freedom that are impoi tant for the accurate determi-

nation of the lowest-frequency vibration-mode characteristics and will usually

differ from the weights and structures models.

It is evident that an integrated analysis system must provide the capability

for automatically transferring data from one model to the next in the analysis

sequence. Since each analysis function, however, utilizes a model tailored to
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its own specific discipline, it is also necessary to provide certain data trans-

formations. The automated procedures included in FASTOP pro.ide for

* transformation of loads in the aerocynamics and weights models to

equivakent applied loads in the structures model, and

* transformation of flexibility and mass matrices associated with the

structures model into similar matrices that are representative of
the dynamics model.I i

All of these transformation are based on principles of "load beaming",

that is, assumed relationships that transfer loads in one model to gets of

statically equivalent loads in another.

5.3 DESCRIPTION OF BEAMING PROCEDURES

The methods for transferring (or "beaming") forces in the aerodynamics

model and forces and moments in the weights model to the structural node points

are illustrated in Figures 5.1 and 5.2. Two basic types of beaming are provided.

The "eight-point" procedure is designed primarily to transfer applied aerody-

namic or inertial loads that act at locations within the geometric boundaries

of the primary structure. The "four-point" procedure is intended to transfer

loads that act outside the structure, such as at a wing's trailing or leading

edge. When using either procedure, transformation matrices are established

that express loads at the stru-tures-model node points (in its coordinate system)

in terms of unit applied loads in either the aerodynamics or the weights models

(in their respective coordinate systems). For aerodynamic forces, provision is

made for transferre.Lg only forces that act normal to a reference plane; however,

for inertial loads, all six components of force and moment may be transferred.

The program requires as input the nodal geometries of the pertinent models and

correspondence tables that indicate the manner of beaming and the ,nodes from and

to which the loads are to be transferred.

The assumptions made in both procedures are described in the next two sub-

sections. These are followed by a discussion of the use of load beaming as a

first step in developing the transformations that are required to convert data

from the structures model to the dynamics model. It should be noted in the
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folloting -discusaiona that the x-y coordinate planes of all mathematical models

are asated parallel, even though the coordinate systems may have different

origins,

5.3.1 Eight-FPint Beaming
'Referring to Figure 5.1(a) or (b), point M represents an applied aero-

dynamic or inertial load point; points I, J, K, L and N, 0, P, Q represent

the upper and lower cover structural nodes, respectively, to which the applied

loads are being transferred. The "beaming plane" contains point M and is paral-

lel to the structures model x-y plane. The line e-f is defined perpendicular

i to the line a-b, and g-h is parallel to a-b. Thus, e-f, g-h, and a normal to the

I beaming plane form a local, orthogonal coordinate system.

Unit applied forces and moments are first transformed into components in

this local system, Local loads P1 , PY, PZ, and are first trensferred along
line e-f to points e and f, under the assmption that e-f acts as simple (pin-

ended) beam. Then, usig a-b and c-d as simple beams, the loads are transferred

to points a, b, c, and d, where they are finally beamed to the structural node

points. The local moments M and M follow a different path; they are first
x z

beamed to g and h, and thence to a, b, c, and d by using a-c and b-d as simple

beams.

it should be noted that all applied moments are initially transformed into

force couples in the first beaming Rtep, and only force components are eventually

transferred to the structural node points. Also, forces that are applied parallel

to a beam member are distributed to the end points in inverse proportion to the

* distances from the point of application.

After the forces at the structural node points are determined, they are

then rotated into the structural coordinate system.

5.3.2 Four-Point Beaming

As indicated previously, this procedure is particularly applicable to aero-

dynamic or inertial loads that are applied at points external to the structural

idealization. Referring to Figure 5.2(a), point M represents the applied aero-

dynamic or inertial loading point; points I, J, K and L are the structural node

points to which the applied loads are being transferred. The "reference plane"
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is parallel to lines connecting I with L and K with J, and contains points e

and f which are the mid-points of I-K and J-L, respectively. Points a, b, c,

and d are orthogonal projections of the structural node points on the refer-

ence plane. The line g-M is perpendicular to line e-f; these two lines and a

common normal define a local, orthogonal coordinate system.

Unit applied forces and moments at M are first transformed into this local

coordinate system, and then transferred to point g, under the assumption that

M-g acts as a beam cantilevered from point g. Next, they are transferred along

member e-f to its end points, with this member acting as a beam capable of

resisting bending, axial load, and torsion. The torsion-resisting capability

at e and f is assumed to be confined to the planes connecting I-K-a-c and J-L-

b-d, respectively. The three force components and the concentrated moment at

each point, e and f, are then transferred to the structural nodes by assuming

that members I-K and J-L are pin-connected at their respective structural node

points. Where forces and moments are applied parallel to a member, they are

distributed to the end points in inverse proportion to the distances from the

point of application.

For the special case where point g lies outside of points e and f, as shown

in Figure 5.2(b), the torsional moment about e-f and the axial force acting along

this member are assumed to be resisted totally by the more adjacent support

point which is f in the illustrative example.

As with the previous beaming procedure, after the forces at the structural

node points are determined, they are then rotated into the structural coordinate

system.

5.3.3 Special Beaming Features for Use in Defining a Dynamics Model

Ine preceding beaming procedures are also used in the transformation of

flexibility and mass data associated with the structures model into a form com-

patible with a dynamics model. Specifically, these procedures, along with the

special added features discussed next, enable the definition of load paths for

transferring inertial loads in the dynamics model to the structural node points.

Once these paths have been defined, considerationu of virtual work and kinetic

energy lead to a means for arriving at rationally determined flexibility and
I
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i.

mass matrices for the dynamics model, These latter steps are fully disc' ased (2
in Subsection 5,4. I W,

5.3.3.1 Provision for Swept Degrees of Freedom. In dynamics modelling it is
often desirable to prescribe degrees of freedom that are parallel to primary
structural members rather than the structural coordinate axes. For example,

pitching motion of a mass point representing a portion of the trailinS edge
assembly of a wing might be described about an axis that in parallel to the
swept rear beam. To accomoodate this type of coordinate rotation, a feature is
provided thst enables the program user to specify a sweep angle, o, at each
dynamic node point, as illustrated in Figure 5.3. (It is noted that these sweep
angles are limited to the x-y plane.) The preceding beaming procedures are then
used to transfer unit inertial loads in the local swept coordinate systems into
structural node point loads in the structural coordinate system. S

Y~

Local Pitch Axis XI
Structural!
Axes

Sweep Angle, u

Typical Dynamics /
Model Node Point.

S

Figure 5.3 Swept Coordinate System for Dynamics Model Degrees of Freedom

36

- : j j ....



5.3.3.2 Direct load Transfer. This option permits the direct transfer of forces ,/

and momnts from the dynamcs to the structures model when selected degrees of

freedom at a node point are identical in both models. It in particularly useful

i in transferring moment& to structures model node points that attach beam elements.

i ThWs differs from the previous techniques which transfer loads to node points

that ore assued to be incapable of sustaining applied moments.

J 5.3.4 Ptactical Considerations

ti In the -procedures just discussed, a~plied loade are trans formed from one math-

Watical model (along assumed load paths) into a statically equivalent set of loads

f in the structures model. Since the manner in which the user relates the structural

~node point numbers to the points I t.hrough L and 9 through Q can affect the final

loa distribution, he should try to use these procedures in ways that enforce the

! most reasonable load dist~ributions from the viewpoint of local structural char-

!i acteristics. This point,is best illustrated by a simple example.

Consider an applied wing tip pitching moment that is to be transferred by

Sfour-point beaming to structural nodes 11, 22, 13, and 14, and assue tbet the

! ! user has assigned these node numbers to 1, J, K. and L as illustrated in Figure

) 5.4(a). In accordance with the procedure outlined previously, the beaming member

~e-f will be essentially horizontal, and tho structural nodes will therefore re-

ceivs the applied moment as approximately vertical forces. Cn the other hand, if

Sthe node numbers are assigned to 1, J, K, ind L an illustrted in Figure 5.4(),

i ~the member e-f will be approximately vertial and will deliver hor'lzontal forces I'

i to the structural nodes. If the structural tip assembly in attached to the pri-

: mary structure with continuous rows of fasteners along the upper and lover covers,

i -it would be more logical to assign the node numbers in accordance with the second

case.

... Some further reommendaions are required with regard to defining lod
beaming from the dynamics model to the structures mcel. The dynamics model
load beaming matrix is used to transfom the structural stmfdpness matrix to s.

a dynamic flexibility matrix using a procedure discussed in Subsection 5.4.h.
This flexibility matrix is subsequently inverted in the process of calculating
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r
matrix [B) T, which transforms dynamics model displacements to structures model

displacements (see Equation 5.7). The dynamics model flexibility matrix must,

therefore, be nor.singular. A singular flexibility matrix can occur if the ('
the number of structural degrees of freedom designated for load beaming is I
less than the corresponding number of dynamic degrees of freedom that are

being created. The user must therefore avoid over-utilization of structural

degrees of freedom in any zone of the structures model.

The user should rlso follow the general rule of designating dynamics

nodes which are adjacent to structures nodes. This will ensure correct

accounting of the increment L dynamic mass matrix prescribed by Equation 6.2.

Choice of a completely arbi'rary dynamics model grid, in which dynamics loads

are distributed to a large number of structures nodes, can lead to a singular-

ity in the updated dynamic mass matrix computed by Equation 6.1. An example

of the recommended procedure is illustrated in Figure 11.4 where it is noted
that dynamic node points are coincident in the X-Y plane with structures nodes

and are positioned vertically between the upper and lower covers.

5.4 TRANSFOPMATIONS REQUIRM) TO DEFINE A DYNAMICS MOD E

The following procedure is , ployed to transform flexibility and mass

data from the structures rodel -( the dynamics model. It ascumes that the
previously discussed beaming procedures have first been employed to develop

a transformation matrix, rTj, that relates forces (or moments) in the dynam-
'cs model, (FD), to forces (or moments) in the structure model [F,}; that is,

(F] I T] [FD). (5.1)

5.4.1 Flexibility Transformation

From the concept that virtual work is invariant under a coordinate trans-

formation, it follows that if forces relate in accordance with Equation (5.1),
then displacements relate as

TS
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wheie (AD) and (a) are displacements in the dynamic und structural degrees of

freedom, respectively.

The displacements in the structure are related to applied forces by the

structural flexibility matrix, CK.31 ; that in,

1Ka1 -1 [Fs" (5.3)

Substituting (F I from Equation (5.1) into Equation (5.3), premultiplyirg by

IT] T, and then making use of Equation (5.2), enables us to write

(6D} _ IT] T (K., -1 IT,] (FD}. (5.4)

This equation gives dynamics model displacements in terms of forces in the

p:.e model, and we may thus define the dynamics model flexibility matrix, [A],

as

A) - iTITCK8 YT]. (5"5)

Provision in made in FASTOP for the automated computation of this flexibi-

lity matiix and its transfer to the vibration analysis module discussed in Sect-

ion .7. For the special case, however, where the degrees of freedom of the dynam-

ics model correspond exactly with those of the structures model, the preceding

transformation process may be bypassed. Inhis instance, the structural stiff-

ness matrix, discussed previously in Section 5, is transferred to and used di-

rectly for vibration an'lysis.

5.4.2 Mass Transformation

The relationship between structural node displacements and displacements in

the dynamic degrees of freedom may be obtained by substitutir.g Equations (5.1)

and (5.4) into Equation (5.3) and making use of Equation (5.5):

r'A5  = [K5]rT] rA]I 1 rA .) (5.6)

14o
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By defiking the displacement transformation matrix

[BiJ. ]-I[T] rAJ', (5.7)
and requiring that the kinetic energy of the structures model be preserved in the

dynamics model, we may obtain a consistently defined mass matrix for the dynamics

model, as follows:

Kinetic M.ergy - 1/2 -AsT[sAs (5.8)

where [Msi is a mass matrix corrtsponding to the structures model. Substituting

the velocity form of Equation (5.6) into Equation (5.8), and making use of

Equation (5.7), yields
T T

Kinetic Energy = 1/2 (AD)[BJ[XsJ B] [4 ~ 59

where the inner triple product is the desired dynami;s model mass matrix, [D;

that is,

[ [B] EM5) [BjT. (5.10) ta

In the event that the degrees of freedom of the structures ad dynamics

models are identical, the computation of [B] may be bypessel, with the mass

matrix of the structures model 1 eing used directly in subsequent vibration

analysis. Further discussion on the calculation of the structures model mass

matrix, in conjunction with the options for defining dynamics model data, is

presented in Section 6.

5.4.3 Computational Considerations

Equations (5.5) and (5.7) show that the inverse of the structural atiff-

neus matrix, [KsJ]l, is present in the expressions for the dynamic flexibility

matrix [A and the transformation matrix [BJ. As equation solving routines are

more eff'cient than inversion routines, the following computational procedure

was incorporated into FASTOP.

First, a new matrix [Y1 is defined by the relation

Ey' I [tc ~l [Ti (5.11)

or equivalently,

Iii

IK sJ[YJ (Ti 5-12
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I view of Equation (5.11), Equations (5.5) a, (5.7) can be put in the for

and

Within 1ASTOP, Equation (5.12) is solved for (yi, vhich is then used in Equation
(5.13) to comute tAO. Then, having A3 and , Equation (5.14) is solved for

[B.

p
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Section 6

MASS MATRIX DEFINITION

6.1 SUMMARY

Two alternate approaches are available for the computation of the dynamics

model mass matrix required for vibration analysis. Ore approach requires that

initial mass input data be specified by the user while the other is fuly auto-

mated and calculates initial mass data using the structural model idealization.

6.2 INITIAL DYNAMICS MODEL MASS MATRIX SUPPUIED BY THE USER

In this approach, the dynamics model mass matrix, (MD], is considered to

be the sum of a constant mass matrix, ry, associated with the initial design,

plus a variable mass matrix, [A, which reflects the accumulated design changes

beyond the starting design; that is,

The task of generating [%D for the initial design is usually the respons-

ibility of a weights engineer, who must account for the presence of structural

members, fixed mass items (equipment, overhanging structure, etc.), initial mass-

balance weights, and all of the nonoptimum components (fasteners, Joints, etc.)

which contribute to the total weight of the real aircraft structure. Based upon

the weights and locations of all these items, the weights engineer must develop

a single representative dynamics model mass matrix for direct input to the system.

Computation of the incremental dynamics model mass matrix, [ARD], is auto-

mated within FASTOP. Inasmuch as all redesign beyond rME] .nvolves structural

members and/or mass balances, both of which are determined in the structures

model, it is natural to first compute the incremental mass matrlx in the struc-

ture model, [A1, and then transform the result to the dynamics model; that is,

rti , [B] [us]" rB]T, (6.2)

where rB1 is the transformation matrix previously defined in Section 5.4.2.
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Oomputation of the diagonal matrix CAR is straightforward. If the current

gage of a structural member differs from its starting value, the incremental

weight of that member (including any nonoptimum factor specified by the user)

is ccmputed and then distributed equally among its attaching structural node

points. For each such node, this "nodal weight" is then assigned to each of the

translational degrees of freedom in [CMs ] associated with that node. The pro-

cedure is essentially identical for a mass-balance variable, except that the

incremental weight is applied entirely to the single structural node at which

the mass balance is located. Finally, CMa1 is complete when all the structural

members and mass balances have been considered. S
6.3 FULLY AUTOMATED COMPUTATION OF DYNAMICS MODEL MASS MATRIX

In the event that time or personnel are not sufficient to generate the

initial input mass data required by the preceding approach, a fully automated

mass calculation procedure is available. At any stage of design (starting or

otherwise), the fully automated method obtains a dynamics model mass matrix, 5

[MD], by first computing a mass matrix, FMsI, in the structures model and then

transforming the result by

mDi -rB] CMa ] rB] T. (6.3)

The computation of rM 1 is identical to that of rAm] in the first procedure,
a B

except that here total weights of structural members and mass balance.i are

used, rather than incremental weights beyond the starting design. Also, the

user has the option of inserting fited mass additions to rM I (not necessarily Sa
diagonal) before transforming ko the dynamics model.

i44
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Section 7

VIBRATION ANALYSIS

7.1 SUMMARY

The procedure for computing modes of vibration begins with the transfor-

mation of the familiar structural-vibration form of the eigenvalue problem into

a special symmetric form. This is followed by a further transformation to
tridiagonal form by Householder's method (Reference 7-1, page 290). A Sturm

sequence technique (Reference 7-1, page 300) is then employed to determine the

eigenvalues, and inverse iteration (Reference 7-1, page 321) is used to cal-

culate the eigenvectors. This procedure has proved to be both efficient and

accurate for problems where the solution may be achieved directly in core.

7.2 TRANSFORMATION OF EIGENVALUE PROBLEM TO A SPECIAL SYMMETRIC FORM

The first step in the solution procedure is to transform the structural-
vibration eigenvalue problem into the form S

[D] (Y) - Xyj, (7.1)

where

(DI = a real symmetric matrix having only real roots

(Y] = an eigenvector of the transformed problem

X a real eigenvalue (= l/W2)

w = a natural frequency in radians/sec.

This transformation can take either of two forms depending on whether the
initial structural representation is in terms of a stiffness matrix or a

flexibility matrix. It should be noted that the eigenvalue, X, is defined

here as Iw/2 since the solution pr'ocedure to be defined subsequently will

determine the higher eigenvalues with greatest accuracy.

7.2.1 Stiffness Matrix Formulation

The eigenvalue problem for the stiffness matrix formulation may 'e

-written as

.t

fa
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im) (x) -%,K. (Xl, (7.2)

S where

rM = the mass matrix of the dynamics model idealization

[K] = the stiffness matrix of the dynamics model idealization

(X) = an eigenvector in dynamics model coordinates

and the definition of X is the same as for Equation (7.1). Factoring the

stiffness matrix into

[K] - LI (LIT (7.3)

by Cholesky decomposition, discussed previously in Section 4.3.1, and sub-

stituting into Equation (7.2) yields

[M] (x - XELJ (L Ix), (7.4)

where the factorization of Equation (7.3) requires that [K1 be nonsingular.

Letting

(Y) = [L T (x) (7.5a) p *
or

(x1-- [L]T (Y), (7.5)

and premultiplying Equation (7.4) by EL I gives

EL)- EM) ( T fy] _- E Ly] (7.6)

or ED) Y) Y, 
(7.7)

where [D] = [L "1 [M) EI "T. It should be noted that ED) is symmetric since

rMi is always symmetric.

46

AL As.
1I



After the eigenvalue problem of Equation (7.7) is solved, as discussed 6
subsequently, the eigenvectors are transformed back to the dynamics model co-

ordinate system using Equation (7.5b).

7.2.2 Flexibility Matrix Formulation (
The eigenvalue problem for the flexibility matrix formulation is

EMI (xi - [A] "  (xi (7.8)

or

[A [M) (x) = x (x(, (7.9)

where [A] = [K)l = the flexibility matrix, and [M], [K], (X), and X are the

same as defined previously. Factoring the mass matrix into

EM] = -L [LIT (7.1o)

and substituting into Equation (7.9) yields

[Al [Li "LT (xi = L 1x1. (7.f1)

Making the same substitution for (XI as defined by Equation (7.5b), but, in this

case using (L] as defined above, and premultiplying by [LIT, yields

I T (A] I [Y) - X (Y) (7.12)

or

[D] (Y) ( y, (7.13)

where

rDI - [L] T [A I L3.[D L FIEI p
Here again, symmetry is preserved in the transformation, and the eigen-

vectors are transformed by Equation (7.5b).
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7.3 COMPUTATION OF VIBRATION MODES FOR A CANTILEVER STRUCTURE

Computation of vibration modes for a cantilever structure proceeds as

described previously in Section 7, where the formulation of the eigenvalue

problem employs either the structural stiffness matrix (Equation 7.2) or the

dynamics model flexibility matrix (Equation 7.9) of the supported structure.

The former approach is taken where degrees of freedom of the dynamics model

correspond exactly with those of the structures model.

7.4 COMPUTATION OF VIBRATION MODES FOR A FREE-FREE STRUCTURE

Although the computation of free-free modes also uses the stiffness or

flexibility matrix of the supported structure, the formulation of the free-free

eigenvalue problem requires relaxation of the fixed support points to allow

rigid-body motion of the structure. The analytical procedures are described
below. In the following discussion a hypothetical "plug" is defined which is

assumed to be rigidly interconnected to all the fixed support points of the

structures model; the plug mass properties represent that portion of thp ronfig-

uration not included in the dynamics model of the flexible structure.

Figure 7.1 shows an unsupported (free-free) configuration consisl4ng of

a rigid "plug" section connected at points A and B to flexible structure;

local flexibilities can exist at A and B.

Typical Dynamic Point on Flexible Structure

Rigid Plug Mass

Plug Reference Point 1DS

I.ertially Fixed Axes

Figure 7.1. Unsupported Configuration for Free-Free Analysis
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The vibration equation for this unsupported system may be written as:

, iMP to.l,,
where

JODI is a vector of absolute displacements of dynamic points on the

flexible structure.

L is a vector of absolute displacements of the plug reference point.

[MD] is the dynamic mass matrix of the flexible structure alone; this

matrix was discussed in Sections 6.2 and 6.3.

[ Mp] is the mass matrix of the plug alone.

[ED] is the stiffness matrix for dynamic degrees of freedom of the

flexible structure excluding the plug; that is, this matrix defines

forces at dynamic points on the flexible structure due to displace- I
ments at those points alone.

[Ks] is the stiffness matrix for the plug degrees of freedom; that is,

this matrix defines the forces acting on the plug due to motion of

the plug alone.

rD]is the stiffness matrix defining forces at dynamic points on the
[Y-P]flexible structure due to plug motion alone.

KPD] i, the stiffness matrix defining forces on the plug due to motion

of the flexible structure alone.

Now, the absolute motion of the flexible structure JOD is due to both rigid-

body motion of the entire configuration and flexible (or relative) motion,

IgDR } "Accordingly, if the plug motions are chosen to prescribe the rigid-

body motions, it follows that

49
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whr D] defio nes the displacement of th dynmi pins n hestucur
due to unit rigid-body motions. The basic vibration equation can now be recast

Sin terms of JDRJ and JOPJ by first substituting Equation (7.15) into Equation

(7.14) and then premultiplying the result by the transpose cf the transformation

matrix in Equation (7.15). The result is

2~DDA ODR +[ +OD~A
-wLDAJ7I ] ~RAiA -p (7.16)

where

[M A] ] [ AD], [MA ] - T[MD] (7.17a)

[MA" [XD T IMDI ["-DI+ [MPI

and

[ KDA =[D] ['D] + [K DP]

[KAD] [X D] T [ KD +[ KPD] (7.17b)

[KA] [XD*'][D] D+ [BDf [KDP] + [KPD] D] + [Kp] I *

However, [KDA] , [KAD] and [KA] must all be zero because rigid-body motion alone

(as prescribed by JOP) ) cannot induce restoring forces from the stiffness
matrix of the free-free system. The same conclusion can be reached in another

manner. Consider, for example, the two terms present in the expresnion for

[%A] in Equation (7.17b). These two terms respectively define the forces acting

at dynamic points on the structure due to (a) rigid-body motion of the flexible

structure alone (see Figure 7.2a), and (b) motion of the plug alone isee Figure

7.2b). As these two force systems are negatives of each other, [KDA] must

vanish. Matrices [KAD] and [KA] can be shown to vanish in a similar manner.

I
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(#P) " 0)]

(# 0)

(a)

(b)

Figure 7.2. Rigid-Body Motions of Structure Alone and Plug Alone

Thus, Equation (7.16) may be rewritten as

y 'I+ Vo 0o h 0

It follows from Equation (7.18) that the rigid-body coordinates |PI are

expressabl in terms of the relative coordinates J 'D! ; that is

Finally, if Eqato [MA1 [M] {0DR) . (7.19)

Finally, if Equation (7.19) is substituted into Equation (7.18), the vibration

equation for the free-free structure in terms of relative coordinates becomes

' '~ ~~ [M ] h,1- [] I] []W J '[I.1 0) (7.20)

where -

[MDFF] [MD] [MDA] [MA] [M] . (7.21)
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Equation (7.21) defines the mass matrix L'DFFJ for a free-free vibration

enalysis regardless of which of the two alternate approaches is used to obtain

the dynamics model mass matrix [M] (see Sections 6.2 and 6.3). Of course,

the plug mass matrix[Y)] must be supplled. If the flexibility approach is used,

Equation (7.20) may be written in the form

(~2[~ M] +L (7.22)

wh re is the flexibility matrix for dynamic degrees of freedom of the

flexible structure excluding the plug (see Equations 7.8 and 7.9).

After the 10DRI are generated in the solution of Equation (7.20) or

Equation (7.22) using the eigenvalue solution procedures described previously,

the associated plug motions can be obtained from Equation (7.19) and the

absolute displace=nts of the dynamic points on the structure mawr be computed

from Equation (7.15). The generalized mass matrix for the free-f.ee system

may then be obtained from the relation

[M] O !0 (7.23)

In the event that the degrees of freedom of the structures and dynamics

model are identical, matrix ['(J is replaced by matrix 1%si which defines the

displacements of the structures points due to unit rigid-body motions. The
matrix is always required if flutter-velocity derivatives are to be

computed for a free-free vibration model (see Subsection 9.3.1).
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Section 8
FLtrl*M ANALYS IS

This module of the FASTOP package determines -e oscillatory pressures

and the generalized aerodynamic forces for the lifting surface to be

analyzed, given a set of normal mode shapes and frequencies. Additionally,
given the generalized masses corresponding to the modes, the program solves

the flutter equation to determine the flutter speed and values of modal damp-
ing and frequency as functions of air speed.

Generalized aerodynamic forces are computed using either the subsonic

assumed-pressure-function procedure (kernel function), tne supersonic Mach-
box method or the subsonic doublet-lattice procedure. In determining the
flutter speed, these ae.rodynamic forces are required at many different re-

duced frequencies; consequently, to save computing time, these forces are
determined at the required reduced frequencies by interpolation, using a

small number of directly calculated aerodynamic forces as a basis.

The flutter solutions are obtained by use of either the conventional k-

method or an improved version of the p-k method of Reference 8-1. To allow
the user to study the flutter mechanism, several parameter variations have
been tutomated. For redesign purposes, the eigenvectors and their associated

row vectors are determined at the flutter speed when the p-k method is
selected.

;S

/
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8.2 AERODYILAMICS ROUTINES

Three oscillatory lifting-surface aerodynamics routines, each based on

linearized potential flow theory, are included:

(1) a bubsonic assumed-presure-function program (kernel function) for

analyzing one or more planar, noninteracting, lifting surfaces;

(2) a supersonic Mach-box program for analyzing one or several planar,

noninteracting, lifting surfaces;

(3) a subsonic doublet-lattice program for analyzing a general con-

figaration of multiple interacting nonplanar surfaces and slender

bodies.

To minimize the required input data preparation, all of these programs have

been written or modified to provide automated geometry definition and modal
interpolation of vibration data. The latter either may be obtained on a
magnetic tape (or disk) from the vibration analysis program described in

Section 7 or may be user-supplied on input data cards. With the former

method of providing the vibration data, the user has the option of elimi-

nating modal data not needed in the flutter analysis. To conserve computer

machine time, the program can be instructed to save the aerodynamic influence * *
coefficients on magnetic tape for subsequent reanalysis with altered vibra-

tion modes.

The following is a brief theoretical discussion of the aerodynamics

routines and the associated options.

8.2.1 Subsonic Assumed-Pressure-Function Program 2

In the subsonic regime, aerodynamic forces are complited using the assumed-

pressure-function method of Reference 8-2. For the general nonplanar case,

the pressure on a harmonically oscillating surface, such as shown in Figure

8.1, is related to the downwash by the following integral equation derived
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U is the free stream velocity ac

h,r are the normal displacement and the streamwise slope of the surface

w is the harmonic frequency of oscillation

p is the air density

t is time

K is the kernel function specifying the normalwash angle at P due

to a unit pressure at P

k is the reduced frequency = abo/U

b is the reference semichord0

M is the Mach number.

This can be rewritten as

-j 4TU ffp (P)K(P-j, P, k, Mdd

S

or ffCp(P)K(P , P, K, M)dgda, (8.2)W (P j) - ,-f C, p,
S

and for planar surfaces can be written as

w(x,y) = JJCp('t,)K(x-C, y-jT,k,M)d9d7 (8.3)

S

where

w is the normal or downwash angle =/U

Cp is the differential pressure coefficient p/q

q is the dynamic pressure = O pU2 .

In the program, the planform coordinates (x,y) and(g,j) are normalized

with respeot to the root semiehord, bo . These nondimensional coordinates

(3, ) and ( ,, are, in turn, transformed into the coordinates of a square

planform, (x, y) and (§,q) as shown in Figure 8-2. After transformation

of coordinates, the integral equation becomes

1 ah

w(x,y) = (.i( + ikh)

o x
1 i1

0
o f Cp(, -- ,kM)bO)d1, (8.4)

-i -1
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Note: j is
Tangential
Spanwise A
Coordinate ... .* **pThewI

71P.

ys- y

Figure 8.1. Nonpianar Harmonically Oscillating Surface.

from linear potential theory:

if *
;(P w-e P(P)K,(Pj, P, k, M) dtda,

where

P is any point on the surface, the coordinates of which are ~ ~

P is a jt point, the coordinates of which are x, y, z

X,g are streamwise coordinates

y,1q are spanwise coordinates

zCare vertical coordinates

a is the tangential spanwise coordinate

(equivalent to I for a planar surface)

S is the total lifting surfa.-e area

p is the pressure difference between the upper and lower covers of the

surface
Sis the complex normal wash =U a + iuh
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U is the free stream velocity

h,& are the normal displacement and the streamwise slope of the surface

w is the harmonic frequency of oscillation 
,

p is the air density

t is time

K is the kernel furction specifying the normalwash angle at P due ®
to a unit pressure at P

k is the reduced frequency =bo/U

is the reference semichord

M is the Mach number.

This can be rewritten as

(P) ff (P)K(Pj, P, k, M)dd
4rrpU2  0

or

(P)K(P P, K, M)dda, (8.2)

S

and for planar surfaces can be written as

w(x,y) -p(t,)K(x-t, y-1,k,M)dtd11, (8.3)

S

where S

w is the normal or downwash angle = /U

Cp is the differential pressure coefficient = p/q

q is the dynamic pressure = 4 pU2 .

In the program, the planform coordinates (xy) and (g,q) are normalized

with respect to the root semichord, bo . These nondimensional coordinates

(SY) and (',J) are, in turn, transformed into the coordinates of a square

planform, (x, y) and (g,j) as shown in Figure 8-2. After transformation

of coordinates, the integral equation becomes

w(x,y) 1h (z + ikh)

0 x
I1 1

8;b 2 C( p ,T )( -J1,k,M)b(11)d~d1q, (8-))
-1 -1 S
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Planform (in real coordinates)
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where

1 is the semispan0

b is the root semichord
0

b(11) is the local semichord.

In the above equation, the planform has been assumed symmetrical about y = o

as indicated by the limits of spanwise integration. Equation (8.4) must

now be solved for the unknown pressure coefficient distribution, Cp (5,T),

in terms of the known downwash distribution. The solution procedure requires

that the pressure distribution be expressed as a series of terms, each of

which is the product of an unknown constant coefficient and a specific load-

ing function. The unknown constant coefficients are then moved outside the

integral and the remaining integration is performed. To assure that the

series can represent the pressure correctly, the loading functions are

chosen to satisfy the following boundary conditions:

" A square-root singularity at the planform leading edge

* A zero at the trailing edge

* A zero at the planform tip (or outboard edge)

* An infinite slope at the tip.

A suitabie 3eries expression satisfying these conditions, which is used in

Reference 8-2 and in this program, is 2 6
J 2(j-l)+6

J=1
I

i=2 (8.5)

where

a are the, as yet, undetermined pressure series coefficients

6 = 0 for a symmetrical distribution of airloads about the root and

= 1 for an antisymmetrical distribution

I is the number of terms in the chordwise series

J is the number of terms in the spanwise series.
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After substituting the series expression for the differential Dressure

into Equation (8.4) and removing the unknown constants from the integral,

the remaining chordwise integrations are of the form:

Id  (l.u)o2(l+u)Ofd(u)du, (8.6)

where
u J

l = and B = -

fd(u) is an appropriate polynomial of degree d.
I I

In the spanwise direction, the integrals also are of the above form but with

different values of o and 8. Inspection of Equation (8.5) shows the lead-

ing panvise factor to be , ., however, the kernel function, K, of

Equation (8.4) contains a factor of 1/(l - T). Consequently, the product

of the pressure series and the kernel function has a factor of i l/V'TW
making the appropriate values of a and 8: = 8 = -4 in the spanwise

integral.

These integrals are evaluated using the Gauss-Mehler quadrature of

Reference 8-3 (pages 312-357) to give O

Qi I~d H (uq) fd(uq), 8l
q=l

where

Q is the number of integration points S
H are weighting functions given in rows two and four of Table 8.1

u are integration points given in rows two and four of Table 8.1.q

With this method, if the integrand can be exactly represented by the product

of a simple singular function, such as i/l-u2 , and a polynomial of

degree d = 2Q-1, then using the Q integration points would produce the

integral with no error. Although the true integrand cannot be represented

exactly with a finite number of terms in the polynomial part, by choosing

enough integration points, the error may be made as small as desired.

59

..I

,_O, O.. .•O "



'1 TABLE 8.1. GAUSS-MEHLER QUADRATURE FORMYLAE

I. Q
For (1-u)o (1+u)Ofd(u)du u=E H(Uq)fd(Uq)

-1 q-1

. H ( weighting function) Uq (integration point)

2Q+ q l
4(-1 q )  - Cos ( rrii 4 2rr (,+u) (2qT ).

2Q+]. q) O 2Q+1

C B 2

4 y 4 - cos(" +2" )

I
After the integrations are performed, Equation (8.4) can be written

I J

(') " Li,j(x'Y') aixj

i=l J=

N

=E L ( ' ~ an, (8.8)

n=l
S *

where

a n = ai , j , N = IxJ

Ln = L = the result of the integration of the product of the

kernel function and the iAth pressure series term.

When Equation (8.8) is applizd at a set of points on the wing (called

collocation points), a resulting system of linear equations relating the

downwash at these points to the unknown coefficients is formed:

N

w(P) =E Ln(P) a.
n=l

6
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or IVI [ at 0& (8.9)
(Cxl) (CxN) (Nxl)

where 0
P is the cth collocation point

C is the total number of collocation points.

The locations of the collocation points are chosen so that the error

that would result from calculating the lift based on fitting a polynomial

thru the collocation points is minimized. Reference 8-2 shows that in the

chordwise direction, this loading is calculated from

r
F -- f() dt, (8.1o)

where f(x) is a polynomial. In the spanwise direction, the integral is

of the form

-y g(y) dy, , (8.11)

where g(y) is a polynomial. Since these integrals are of the same form as

Equation (8.6), Gaussian quadrature can again be used. In the streamwise

case, Equation (8.10), a = - and 8 = 4, while in the spanvise case of
Equation (8.11) a = = 4. Hence, the proper choice of collocation points

can be found in the first and third rows of Table 8.1.

The kernel function, K, of Equation (8.4) possesses a singularity as

y -ij and x-s. Consequently, the collocation and integration points must S
not be aW'owed to coincide. From the above discussion and Table 8.1, the

chordwise locations of these points are:

integration points ui = -cos (2--l) i =
x

collocation points u = -Cos "2cT" c = l,...,C (8.12)2C+1 c

where

I is the total number of chordwise integration points

x 6
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C is the total number of chordwise collocation pointh.

In the spanwise direction, the locations are:

integration points ui  -Cos ( l), (2- l,...,Iy

collocation points u. -cos (CyIl " c = l,...,C (8.13)
y

-where

Iy is the total number of spanwise integration points

Cy is the total number of spanwise collocation points. S

With a choice of I Cy +1 as in Reference 8-2, the points are distinct. In
the current program, Iy cc., be chosen differently as vill be described later.

Equation (8.9) can be written for each mode to be used in the analysis;

hence, for several modes S

(cxNa) (CxN) (NxM)

where ?M is the total number of modes. In Reference 8-2, the total number

of collocation points, C, must equal the total number of undetermined pres-

sure series coefficients, N. With such a restriction, [L] is a square

matrix and Equation (8.14) can be solved f-,r (a] by simple inversion. For

relatively complicated mode shapes, requiring a large number of collocation

points, this restriction forces the use of high order polynomials to repre- * *
sent the pressure distribution. Since this can lead to unrealistic convolu-

tions in the calculated pressures, a new procedure has been adopted in the

present program which permits the use of fewer polynomial terms. In this

approach, the [L] matrix is no longer square ( C>N ) and Equation (8.14)

is solved in a least-square sense as described in Reference 8-4.

A least-square solution to Equation (8.14) consists of a matrix [a)

which minimizes

11 [w] - [L][a] (8.15)

where ,... indicates the Euclidean norm- defined as the square root of

the sum of the squares of the terms of the array. This is equivalent to

minimizing (w T - [al T [L T)([w]- [L [ a] ). (8.16)

for each of the NM columns of [w] - [Ll[a 1.
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When the rank of L equals N, a solution can be obtained hypothetically by

iL] [L ][a] [] T [w] *
[a]E(L]T [L])1 [L ]'T  ] (817)

However, [L T [LI is frequently ill-conditioned making this direct approach

impractical. Reference 8-4 shows that this problem can be avoided by first

decomposing [L] by an orthogonal transformation [T] , formed by the continued

product of Householder transformations (Reference 8-5), such that

(CxC)(CxN) (CxN)

where [Ti is an NxTI upper triangular matrix. Applying this transformation

to both sides of Equation (8.14), one obtains

R -] [a] =[T] [w]- (8.19)
Upon extraction of the first N rows, Equation (8.19) becomes 0

[R] [ a [I101 [T] [w], (8.20)

where [] is an NxN identity matrix. Since R is an upper triangular matrix,

this equation is easily solved by the back solution part of any linear- * *
system-solver (see Reference 8-3, pp 428-429). It can be shown that

the solution of this equation is, indeed, a least squares solution to

Equation .8.14. This is done by showing that it can be reduced to

Equation 8.17. To reduce the ccmputing time required in subsequent

re-analyses made with revised modal data, the user can save the matrices '

[TI and [T1 [L] for future use. In subsequent analyses, new [w]

matrices are generated and a system analogous to Equation 8.20 is

formed:

[IO]. ([,T] ) .[IaB] :[I',01.[T] - [w] , (8.21) "
old new old new

from which pressure series coefficients, [al, can be determined for the

new modes.
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Once the pressure series coefficients have been determined, the

normalized generalized air forces are computed by

rs ~2 rs - ffhr(xy) p(xy,) dy, (.24r3 to.r W (8.22)

3/2

where

Q is the generalized air force in the rth mode due to the pressure
rs sth

from the s mode

S/2 indicates integration over one half of the planform

h is the deflection distribution in the rth mode
r th

ps is the pressure distribution in the a mode.

This can be rewritten as

2
%s afhr (xly) Cps (x,y) dx dy. (8.23)

S/2

Transforming to nondimensional coordinates and substituting Equation 8.5,

this becomes J 0
s r y2 y2(j-l) +6

ra 2 f2il
J-i -l

oJ a (a) + a, ai)(x+l)xi2) h(r)(xY)dy

-l (8.24)

This integration is performed using the appropriate Gauss-Mehler quadrature

formulae previously described. The number of integration points used in the

chordwise integration is twice the number of chordwise collocation points, C,

and in the spanwise integration equals the number of collocation points, C .Y

Important considerations in using the assumed-pressure function program

are the choices of the number of terms in the pressure polynomial, the number

of integration points, and the number of collocation points. For Equation 8.14

to have a unique solution, the number of collocation points in both the

chordwise and spanwise directions must be equal to or greater than the num-

ber of polynomial terms chosen to represent the pressure distribution in

64

I

.-----

tS

. . .... _ .. .. • . . .. . .. . . . . ... , . •. • . . . ! .. .• • . . )



the respective directions; i.e.,

C 2'I1and

c 2 J. (8.25)

Furthermore, for chordwise and spanwise integrations of the product of the

pressure and the kernel function to be satisfactory, Reference 8-2 advises

that the number of integration points in each direction should obey the

relationships
xx 2 C x  and

and(8.26)

Tineaeacr y Cy+l.

To increase accuracy, more integration points can be used in the present

program than the minimum recommended. In Reference 8-6, it is shown that

the excess chordwise integration points can cause numerical difficulties

if their number is not chosen carefully to avoid close proximity between the

collocation and integration points. It suggests the following formula to

govern the choice:

* rIx n (Cx + j1 • (2NC-1), (8.27)

where NC is a positive integer and I is taken as the truncated integerx
value of the expression. In the present program, the user selects C and NC

xas data after which the program itself computes Jx from the above equation. •

Additionally, the user supplies Cy and a positive intege , NS, as data; and

the program computes the number of spanwise integration stations by the

formula:

IY = NS (Cy +1). (8.28)

One final empirical guideline suggested in Reference 8-6 to obtain

converged results is to choose the number of collocation points to satisfy

the ratio

C (A.R.) (cx '(8.29)
Cos t~

where
M is the Mach number
A.R. is the aspect ratio

Am is the sweep of the wing midchord at the root.
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8 upersonic Mach-Box Program

For the supersonic regime, the aerodynamics program used is 
a modified

version of the Mach-box procedure described in Refirence 
8-7. For a har-

monically oscillating planar surface, the pressure 
is related to the velocity

potential, and thence to the downwash distribution, 
by

p (x, Y) - 2P (U w.+ i) (x, y)

-id X-0 Cos EA

* t (U-a + iw ) ) - ~
11 ax

oi r (x-) Cos (, .

orR

(8.30)

Surface x, 
'

FreeMach 
Line

Stream 
from Apex

Boundary of / b by b/O

Idealization

Y9,t

Figure 8.3. 1'9ch Box Grid for a Lifting Surface.
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where

x, are streamwise coordinates

y, 1 are spanwise coordinates

p is the differential pressure between the upper and lower covers

of the surface

p is the air density

U is the free stream velocity

w is the frequency of oscillation

is the velocity potential ,

S is the lifting surface area bounded by the inverse Mach cone

emanating from (x, y)

d is the complex downwash velocity = U o + iwh = Uw

h, are the deformation and slope of the surface

M is the Mach number

C is the differential pressure coefficient = p/j pU2 .P

With the exception of special cases, the integral cannot be evaluated in

closed form; hence, a numerical approach is required. In Reference 8-7, the

area, S, is di'ided into eleer.tary small rectangular boxes having their

diagonals parallel to the Mach lines as shown in Figure 8.3. The rectangles

are subsequently converted to squares through the coordinate transformations

Streamwise " x/b,

Spanwise = y/b i

where b is the rtre.wise dimension of a box and b/S is the spa-wise dimension.
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" Assuming the downwash is constant ovr: each of these "Mach toxes," Equation

(8.30) can be rewritten as:

SC (,g)=-U 1ff

~S 1

)JTT ~ ~ R0 rk!4 d d

II

wher IL Cd

(PC- wj + ik) 0 C,

• J (8.32)

', or c (Z, 7) wj Cj( ) (8-33)

where

S is te jth box within the inverse Mach cone emanating from ()

U
- M 2

b is the streamwise box size ',

w j is Vie downwash on the jt box|

Cj is the Jth pressure influence coefficient for point (. ), i.e.,

the pressure at the point due to a unit downwash on the jth box.

Two met-ods have been classically used to perform the complex integration

over the b1x area. The first, developed in Reference 8-8, uses a mean value

of the exponential and cosine terms when a box Is far removed from the point

G, ) id a series expansion up to k2 when a box is close. Although these

approximation- simplify the integration, they introduce significant errors,

when the reduced frequency, k, is high. For a more exact evaluation, a second

method, a Bessel function series representation of the integral, is presented.

in Reference 8-7.
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The method used in the current program is different from both of these

two in that Gaussian quadrature is used to evaluate the integral. With this

technique, singularities that occur in the integrand when the box area is cut

or touched by the inverse Mach cone emanati.'g from the point (, X ) - see
Figure 8.4a - can be accurately accounted for as described below. In fact, if

the integrand could be represented exactly by the product of a simple singular

function, such as i/vl-Y, and a polynomial of order 2N-1, then using N

integration points would produce the integral with no error. Although the true
integrand cannot be represented exactly in the above manner, by taking enough

integration points the error may be mede as szr%1 as desired.S

First, the pressure influence coefficient of Equation (8.32) is rewritten

by performing a change of variables:

m4 q
4-ikt~x i~d~xSc- + ik) e Cos - * - 4 ay,

4 fm+ + + -ik x k x
i..-' ikf j e *cos dM R1*

, _ 4 k R j _ z'

4,, -ii (t4 -_1__
1 .ea Cos •~

OTT I M 5

m R . (8.34)
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e a a a a a e

~A.* a a a e

e a e

Inverse d Inverse
Mach Line Mach Line

I Receiving
(a) Type of Singularity Point

and Integration Area -

a None - Unit Square
b Along 2 Sides - I/h Square d At 2 Corners - Unit Square

Along 1 Side -1/2 Square e At 1 Corner- Uni% Square

(b) Local Mach Box Coordinates for Arbitrary Receiving Point

( 4,3) (4,2) (4,,) (,o) (4,1) (4,2) (4,3) (4,4)"

(3,3) (3,2) (3,1) (3,0) (3,1) (3,2) (3,3)1 . O

Inverse "(2,2) (2,1) (2,0) (2,1) (2,2) Inverse
Mach Line Mach Line

' (1,) (1,o)(1,l),!j n,, m \ , (0 /
y, ~, (o~)~y~ Unit

,l YlBoxI I

Box Centers:
bx = x- = -Ax 3F - -4i

c ~ ct+y = y - m = l+cYe ly1 - +cI

Figure 8.4. Singularities and Coordinate System for Mach Box Formulation.
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where ! .
.= -

2,m are the components of the distance between the J box center and the

point (-, ) - sne Figure 8.4b. i

R1- -U .I?2 I

Next, the two single and one double integrations are performed using various

quadrature formulae of Reference 8-9. Referring to Figure 8.4a, five cases I

can arise depending on how the sending box is cut by the inverse Match cone

(a) Box not touched: 1I 2, i 1 2.

(b) Box at apex of the cone: = 0, m =0.

(c) Box split by the cone: = m, m > 0.

(d) Box touched at two corners by the cone: I = 1, m = 0.

(e) Box touched at one corner by the cone: f > 1, m = 1 - 1. • *
In case (a), since there is no singularity, the following quadrature

formula (Equation 25.4.30, Reference 8-9) may be used for both the spanwise

and chordwise integrations:

I f(y) dy = - H.i f(yi), (8.35)
Jo. i=l

where

b-a b+a
2 -1 2

x is the i zero of the Legendre polynomal, Pn

Hip the weighting function at the ih quadrature point, 3

=2(- x'~ P (Xi)n

T1

S

S
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In case (b), the integration is to be performed only on the triangular

arza of a quarter-box. Hence, reversing the order of integration in Equation

(8.34), the linits ol the double integral becomef f , while he limits of
S-Ax

the single integral are Since R - 0 at the limits, 4x and -Ax, and

since R, = P_1 :0 -at the limits I and -, the spanwise integrals have singu-

larities ari a different quadrature formula (Equation 25.4.39, Reference 8-9)

is used:

b .

H fy) d4 Hi f (8.36)V(y-a) ib-y

where
b-a b-a

i 2  i 2 2-a

x cos (2i -1)

H -/n.

After the spanwise integration is performed, Formula (8.35) is used in the S @1
chordwise direction.

For case (c), the integration is done over a triangular half-box whereL4 ad Ax Snetesaws

the limits of the integrals become - f and Since the panwise

integrals here have singularities at the upper limits only, the appropriate

quadrature formula (Equation 25.4.37, Reference 8-9) is:

b n 2n
2~y (2n (8.37)a 2 Hi f(yi),

fail
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where

a + (b-a) (1-x

Sxi  is the ith pos. zero of the Legendre polynomial, P2n

H(2n) are the Gaussian weights of order 2n.

Again, Formula (8.35) is used in the chordwise integration.

For ca se (d), an integration is first pe;.foi-ped over the triangular

shaded area in Figure 8.4a (comprising boxes b, c, and d) using the quadra-

ture formulae for case (b). Then by subtracting the previously derived

pressure influence coefficients for boxes b and c, the desired integral over

d is achieved.

Finally, for case (e), the integral for an aggregate area (see dotted area

in Figure 8.4a) consisting of a triangle on the Mach line and the subject area S
is determined; and from it the integral for a triangle is subtracted. When the

spanwise integrations are performed, Equation (8.37) ia employed, while
Equation (8.35) is used in the chordwise direction.

For case (a) and all chordwise integrations, the present program uses six * *
integration points for the quadrature. In the spanwise integrations, six points

are used when k < ( )2, while twelve points are employed when k > ( )2
33 M

At a given Mach number and reduced frequency, the pressure influer.ce

coefficients are functions of only I and m - the separation between the sending

and receiving box c'nters. Consequently, influence coefficients are computed

by the above formulae only once for each admissable 1, m pair ( I Z 0,

m j ) and are used repeatedly where needed.

The pressure on any box is a function of the downwash of only those boyes

within the inverse Mach cone emanating from its box center. For a surface,
the edges of which are all supersonic, the pressure is, furthermore, only

influenced by boxes on the planform. If any of the surface edges are subsonic,

however, there are regions adjacent to these edges which do affect the pressure

'of some areas on the planform. To account for this effect, the -,oncept
(Reference 8-10) of a permeable "diaphragm" is introduced in these regions.
This permeable sheet does not alter the flow nor can it sustain pressure. It
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is bounded by the surface edge and the Mach lines emanating from the corners

of the lifting surface - see Fig-are 8.5. e, Z,

The relationship between the pressure and downwash on the combination of

the lifting surface and the diaphragm area can be written:

D]t -w (8.38)

IDJW DD Dl

where

PW is the pressure on the wing boxes

PD is the pressure on diaphragm boxes

are the influence coefficients giving pressures on the wing boxes

due to downwash on the wing boxes

CWD are the influence coefficients giving pressures on the wing boxes

due to downwash on the diaphragm boxes

CDW are the influence coefficients giving pressures on the diaphragm

boxes due to downwash on the wing boxes

CDD are influence coefficients giving pressures on the diaphrasn boxes , 01
due to downwash on the diaphragm boxes

w S  is the known douwnwash on the wing boxes

wD is the unknown downwash on the diaphragm boxes. S
Since the pressure on any diaphragm box is zero, then

[CDW]{wS}+[CDD]{wD} 1+ (8.39)

ard the unknown diaphragm downwash can be evaluated by

= o [CDDj [CDW]"S, (•
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Substituting this result into Equation (8.38), yields the final expression for

the pressures on the wing boxes: (

where lAd - fCW.W] lc (Ci[CD rClW (8.42)

For maximum computer efficiency, the actual calculation of the pressures,

P is generally performed in a different manner from that implied by Equation

(8.41). The calculation of the aerodynamic influence coefficient matrix, [AIC]
leads to either extensive use of core in storing matrices or a large number of

I/O operations if the matrices are stored on data devices. If there is no neen

for saving the [AIC) array for future use, the machine operations can be

appreciably reduced by computing the pressures as follows: P

(1) X [CW] WS

(2) Y j - [CDD] 8.41 (3) " z

In this way, core storage requirements are minimizFl, since only a vector need

be stored in going from one step to another.
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®ii,0
Cace the oscillatory pressures are computed, the normalized generalized ( )

aerodynamic forces are computed by

2 f
h-s -b. h (x, y) C P(x,y) dx dy. (8.;4)

Slnca the boxes are assumed to be very small, the integration car. be replaced

by a summation over every box on the planform:

- 2k v..% r(J O U (8.145)

where

h ( j )  is the deflection of the jth box in the rth mode
r

p(s) is the pressure coefficient of the jth box in the st h mode

is the area of the J surface box.

It should be noted that each box area is b2/0. The program automatically

establishes the gridwork of boxes: From a user specified number of boxes

desired, the program calculates the box size necessary for the boxes to cover

the planform and diaphragm and to align with the inboard and outboard planform

edges. Consequently, no boxes overhang the planform side-edges. (Referral S
to Figure 8.5 here and in the remaining discussion may be helpful.) Each box

is designated as either a wing box or diaphragm box depending on whether its

center lies on or off the wing, respectively. In general, boxes d2 overhang

the leading and trailing planform edges causing, in effect, a Jagged represent-

at.on of these edges. For most configurations, this Jaggedness has been found

to have little efLect on the accuracy of the computed generalized aerodynamic

forces, providing that the box grid is not too coarse. It follow3 that

T 7
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since pressure is assumed cc,.sant over each box, wing boxes that overlap

the planform edges support a force on their off-wing portion as well as the

portion actually lying on the surface. This results in a computed force in

excess of the correct amount. However, diaphragm boxes that overlap the
planform edges support no force on either the on- or off-wing portions and,
hence, result in a deficit in the computed wing forces that tends to balance

the excess obtained from overhanging wing boxes. In Figure 8.5, this balance

is illustrated for one representative pair of boxes. The shaded area is the

off-wing portion of wing box A while the croashatched area is the roughly S

balancing on-wing portion of diaphragm box B.

When a highly swept surface is analyzed for a relatively low Mach number,

the number of forward diaphragm boxes can become so great as to cause an

appreciable increase in computing time. However, the downwash in the diaphragm

region decreases very rapidly in the forward streamwise direction. To save

comuting time, the present program takes this rapid decay of diaphragm down-

wash into account and allows the user to request a box-elimination option

whereby the diaphran boxes are ignored forward of a user specified distance

ahead of the leading edge. 5

In the program, provision is made for computing aerodynamic force co-

efficients and center-of-pressure locations. The user may use this facility

to compare known ste.3y state data with computed values to determine the number

of boxes required for a satisfactory so2 'tion. Another approach is to vary the

number of boxes and look for convergence in the stability coefficients.

8.2.3 Subsonic Doublet-Lattice Program

For the added capability in the subsonic regime of analyzing control sur-

face configurations, multiple interfering surfaces and interfering surfsce-body

configurations, the doublet-lattice program of Reference 8-11 is used. The formula-

tion of this method is different from the assumed-pressure-function method but

starts with same integral equation relating the wash norml to a harmonically

oscillating surface to the lifting pressure:

8 ( T-f Ci(P) K(P, , k, M) dC dc, (8.2)

S
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where (2)
P is any point on the planform, the coordinates of which are , i, €

P is a jth point, the coordinates of which are x, y, z

x, are strea wise coordinates

y, are spanwise coordinates

Z, are vertical coordinates

a is the tangential spanwise coordinate

Sw is the normalwash angle = = - i o h
U boC 'is the differential pressure coefficient

K is the kernel function relating the nonsalwash at P to the a unit

pressure at P

M is the M4ach number

bo  is the reference semichord

h is the vertical displacement of the surface •

a is the streamwise slope of the deformed surface

k is the reduced frequency .2
$

S is the surface area of all lifting surfaces included in the analysis.

If the surface is divided into J elements over which the Dressure is Pssumed

constant, the previous equation becomes

w (x, y, z) = fK (x-t, y-ll, z-C, w, M) d§ da. (8.46) 0

j=J. EEMENT
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of each element. As illustrated in Figure 8.6, this is equivalent to an un-

steady horseshoe vortex whose bound portion lies along the 1-chord of the

-- /

Nee The resure ispass o is

(x. Y, Z)C 69 u (X-Sp , 2-h-C, w, M) do, (8.l47)

.4~i

where Af.j is the length of the average chord of element J, and the integration

is taken along the J-chord line of the jth element.

Lattice Element

Collocation Point at

Element 3/4 Chord

Trailing Vortices

\Bound Vortex

at Element 1/4 Chord

Figure 8.6. Horseshoe Vortex Element Used in
Doublet- Lattice Method,
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If ';he downwash is calculated at points located at the 3/4-chord midspan

of each of the J elements and the above equation is satisfied at each of these

points, the follc-ing set of equations holds for i 1 1 to J:

~J

wj C AC, K (xigl, yC-, w-, w, M) do. (8.148)i i-1-1i
J=l ELEME

This can be written in matrix form as:

tw) - [D] IC } (8.49)

where Dij relates the downwash at the ith point to the pressure over the jth

element. By solving this set of linear equations, the pressure distribution

over the surface is calculated.

Because the doublet lattice method is not explicitly fitting pressure

functions on a planform as is done in the assumed-pressure-function method, * *
multiple aerodynamically interacting surfaces can be modelled by simply de-
fining lattice elements on each surface. In this case, Equation (8.48) still

holds, but J is now the number of elements on all surfaces.

To account for aerodynamic interaction between bodies and surfaces,

Reference 8-11 describes a method of modelling each body by axial doublets

along the body axis and by panels of unsteady horseshoe vortex elements on

the body surface in the vicinity of each lifting surface with which the body

might interact (see Figure 8.7, for example). The strengtii of each axial

doublet is calculated by slender body theory. The incremental downwash on

the panels on the body surfaces and on the lifting 
surfaces caused by these

axial doublets is then computed and subtracted from the prescribed downwash

for these surfaces. Equation (8.49) becomes

i s £i I p. 1
D I] 1C (s))

1DisD C I

II pI) S ~1 8.50

• 
I

'I8

!p

1A

* tiK -. t .. .. ft.. . .= -.. . . . . .. " " .. . | ' *'' - : '



where

Cp(S) is the pressure coefficient distribution on the lifti ig surfaces

Cpj is the pressure coefficient distribution on the inter.cting body

surfaces

C is the pressure coefficient distribution on the slender-body
P(B) axial elements

is the downwash distribution prescribed on the lifting surfaces

w, is the downwash distribution prescribed on the interacting body

surfaces

PFSB is the downwash distribution on the lifting surfaces caused by unit

pressure coefficients along the slender bodies

FlB is the downwash distribution on the interacting body surfaces caused

by unit pressure coefficients along the slender bodies d
DSS is the downwash distribution on the lifting surfaces caused by unit .

pressure coefficients on the lifting surfaces

DS, is the downwash distribution on the lifting surfaces caused by unit

pressure coefficients on the interacting body surfaces

DS is the downwash distribution on the interacting body surfaces caused

by unit pressure coefficients on the lifting surfaces

DII is the downwash distribution on the interacting body surfaces caused

by unit pressure coefficient on the interacting body surfaces.

Since C was calculated fron the downwash and geomr'try of e'ch body using
I (B)I

slender-body theory, the only unknowns in this matrix equation are C and

ICp(I)l " This set of equations is solved for these pressure distributions by

a standard linear system solution algorithm using Gaussian triangularization

and back solution (see Reference 8-3, pp 428'-429).
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7.

As in the Mach-box method, generalized aerodynamic forces arising from

lifting surface pressures are calculated by

J2

U i) 0(i) U)j

2_k2  h r ' (8 .4 5)

where, here, AO ) is the area of the jth element. This can be rewritten in

matrix form for all N modes as:

BJ=~4 h]JEAJ [cpJ (8.51) j
(Ira) (NXJ) (JxJ) (JXN)

where N is a diagonal matrix. When interacting bodies are present, three

generalized forces are present:

[~ I.. + I+ ](8.52)

The first arises from the prodiuct of deformations, pressures and areas of the

lifting surface elements; the second from the product of those of the inter-

acting body surface elements; and the third from the product of those of the

body elements - the appropriate areas in this last case are the products of the

body element diameters and le.igths.

To obtain satisfactory pres4.:e distributions, the lifting surface must

be divided into strips of elements whose edges are parallel to the free stream.

An example is shown in Figure 8.8. Additionally, element edges should lie along

surface edges, fold lines and control surface hinge lines. Three guidelines

should be observed in subdivision:

(1) The leading and trailing edges of adjaceu:. pairs of elements should

be aligned and located at a constant percent of the strip chord when

possible.

(2) The dimensions of elements should be decreased in the directions and

regions of large gradients in pressure and/or downwash, such as near
!hinge lines, leading edges and wing tips.
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*Control Surface
Fgr8..a Hinge Line D WRoo t

rLeadi ngg nto
U dge
~Crank

Freestream

ho iadrng

*Areas of Finer Grid Edge I
Definition

*Tip--

Figure 8.8. Doublet-Lattice Modeling of a Delta Wing with

Cranked Leading Edge and a o Control Surfaces.

(3) The aspect ratio ofo each element should be unity or less. However,
this is not always l ossibleespecially in regions where a largeL

pressure gradient is expected. This is evident in the example

shown in Figure 8.7.

The opt~mum configuration is predicated by the need for keeping the number "

a number of trial configurations and compare re-ults before making a final

analysis with a fixed element layout.

8.2.4 Modal Interpolation

For each of the above aerodynamics routines, the normalwash angle is

required at specifieLd aerodynamic grid points on the liAing surface:
* I

wi j kwlj = +'J i ohi j. (8.53)
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where. andh i ae the.tra-ise slopejn the dislacement o o cint i in

ts
srecified on a dynam ics grid which, in general, does not coincide with the aero.

dy n=ics grid, an interrolatior. is reu.ired. The procedure used consists of

representirg the dynamics grid as a set of spanwise oriented lines connecting

:.r.de points at which modal deflections are specified. These deilections are

interpolated along the lines to each spanwise station at which aerodynamic

grid points lie and then are interpolated chordwise along each such station to

each aerodynamic rrid point. This scheme is illustrated in Figure 8.9.

x Spanvwse Lines X Inpu,; (Vibration)
Connecting Input Grid Pcit~ts
Grid Points * Aerodynamic

..... Grid Foints

Root Chord

/r-*z --L / M /-/ / Tip
Chord

y._

Chordwise Lines 0 User Prescribed
Through Aerodynamic Limits of
Grid Points Spanwise

Interpolation

Figure 8.9. Modal Interpolation Schee.

In a variation of this scheme, available as a prcgrs, option, modal

stream.wise slopes, as well as deflections, are specified as input data along

a single panwise line. The program then creates a second line parallel to

and at a specified strearwise distance from the specified line and transforms

the modal slopes and deflections to a set of deflections along each line:
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" where
1her {h t' i re the defletions and strer-wise slores prescribed

along the first line

h are the deflectiors computed along the second line

I is an identity matrix

is a diagonal matrix having the specified separation between

the lines as each of its diagonal terms.

Usi.n4 this set of lines and deflections, the interpolation proceeds accordirnE

to the origFinal schenne.

-or a surface with a control surface or some other stecial region across

the boundiries :of which the-modal deflections are not continuous, an option is

available whereby the interpolatin is performed over the main surface antl over ,

the control surface(s) separately uding separate sets of lines and node points.

In this manner, modal discontinuities across the boundaries are preserved.

The calculations performed in the abbve schemes use the Lagrangian inler..

polation formula of Reference 8-3, pages 60-68. Accordingly, a polynomial, g(x),

is determined as an a'.proxination to a fnction, f(x), the value of which is

k~own at ech of N points, { 0, x', ... , xl; . This polynomial is compued J "

by I
___________________ 1, 1

fx (x-X ) ... (x-8_) .55) .
: k=O

In the present program, the polynomial, g(x), is limited to degree N = 3 to

minimize tonvolutio-s in the approximation. Conse0riently, in cases for which

the modal deformations are specif-ed nt more than iour oints s-nwise or chord-

wise, the ar'proxi'mation is a piecewise-continious cubic poly..ord i.l. As a rorr,

option, the user can f'iither res:rict the polrn ..ial to a linear or p.rabol.c

function in regions where extrapolation is needed either s tanwise or chordwise.
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,.2.5 M.zltirle Surface Capoabilities

in the doublet-lattice procedure, multiple aerodynamically interacting

surfaces may be treqted as descrited in Section 8.2.3. Although the Mach box

procedure and the assumed-pressure-function procedures do not account for

interiction effects, these methods may be used to analyze a multiple surface

vehicle where aerodynamic interaction i. i.ot present. This is achieved by

calculatirg the generalized aerodynamic force contributionz for each of the

vehicle lifting surfaces and adding these tcgether before passing them to the

flutter solution routine. Additionally, the user can request that the aero-

dynamic forces of a particular surface be multiplied by a specified scalar

be6re the addition is made, so that empirical knowledge of the actual lift

of a surface as compared to its calculated value may be reflecte,.

8.3 GENRALIZED AERODYTI 4IC FORCE ITMERPOLATION

For a flutter analysis, generalized aerodynamic forces are required at

several reduced velocities. To reduce the computation time needed to obtain|

these forces, interpolation is used 'to determine the generalized aerodynamic

forces at all desired reduced velocities from forces directly computed at a

smaMl set of selected, reference reduced velocities. A separate interpolation

is performed on the real and on the imaginary part of each term of the general-

ized aerodynamic force matrix. As in the modal interpolation of section 8.2.4,

Lagrangian interpolation (Reference 8-3, pages 60-68) is used and the approxi-

mating function is limited to a piecewise continuous second- or third-order

polynomial,

In the present program, the user supplies a goodness-of-fit tolerance

and six reference reduced velocities ordered by increasing value and distribute(

over the range required in the ibsequent flutter analysis: Ivl, v2, ... v6

Jsing generalized forces computed at three of these six, a generalized aero-

dynamic matrix at a fourth is determined by interpolation and compared with a

matrix of generalized forces directly computed at that reduced velocity. The

comparisons are performed for various arrays, C, formed from combinations of

the terms of tha generalized icrce matrix and take the form of the test:
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s computed interpolated/u tolerance,
..... . II11 C 11 , , t l r n e 5 ),

coputed

where It C !t is the Euclidean norm - defined as the square root of the eum of

the squares of the terms of array, C. This test is made separately for C

chosen as: i
(1) the entire generalized force matrix, ]

(2) a vector of the main diagonal terms of [Q]

and (3) each successive two-by-two matrix formed about the main diagonal

of[Q.

If any of the above tests fail, the computed forces at the fourth reduced

velocity are added to the interpolation basis; and tests are made at a fifth

reduced velocity. The procedure is continued for a sixth reduced veloity

if necessary. A summary of the tests performed is presented below in Table 8.2.

TABLE 8.2. TESTS PERFORMD FOR GOODNESS-OF-FIT IN GERALIZED
AERODYNAMIC FORCE IiI.ERFOLATION S -

INDICES OF CO4PUTEDARRAYS USED FOR IN'DEX O? TEST FAILURE
TEST INTERPOLATION TESTED ARRAY LEADS TO

A 1, 3, 6 2 Test B

i, 2,,3, 6 4 Test C

C 2, 3,4 , 6 5 Use of all computed
array in the actual
interpolation

After the goodness-of-fit tests have been made, the procedure for

obtaining generalized forces at any selected reduced velocity is summarized

in Table 8.3.
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I

TABLE 5.3. GERALIZED AERODYNAMC FORCE INrERPOLAION "A
FROCEDURE IN VARIOUS REDUCED VELOCITY RANGES

PANG TEST A TEST B TEST C TEST C
PASSED PASSED PASSED FAILED

Extrapolation Extrapolation
using parabolic usirZ parabolic ,,,__ _ __ _v < v1 fit through fit through IV, 31Q6'1 Qe* q

Interpolation Interpolation Interpolationusing parabolic Using cubic using cubic. ..
v,' v v2  fit through fit through fit through

qi' Q31 Q6 Q, 9 qe Q31 Q6 q1, 92, 43, Q

Interpolation Interpolation
using cubic using cubic

v3 :g V r N4 fit through - fit through

____3P 4__ 02_ qVV IA % 3 0Q4 ,Q q 5

v Sv EV Interpolation
5. using cubic

fit through
Q3 , q, , q 5 Q6

V5.

Extrapolation Extrapolation Extrapolation Extrapolation
using parabolic using parabolic using parabolic using parabolic

-6 fit through fit through fit through fit through

L q3'6 A6 3 '%AE

* Note: vi = (l/k)i ordered by increasing reduced velocity

S
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In choosing the reference reduced velocities, the following considerations

should be observed: S

(1) For the computed aerodynamic forces to be most accurate, the Jowest

reduced velocity should As high as possible consistent with the

range of values needed for the flutter solutions.

(2) Generally, the first anci sixth reference reduced velocities should

span the expected range of v for which ger.eralized aero forces are to

be calculated. This precaution eliminates the need for extrapolation.

(3) The reference reduced velocities should emphasize regions where

flutter is expected. •

8.4 FIUMTER SOUJTIOU PROCEDURES

There are two solution options available to the user foi- the flutter

analysis:

(1) the conventional k-method, using the QR algorithm (Reference 8-12,

pages 515-568) to determine eigenvalues.

(2) the p-k-method, using a determinant iteration procedure with a

quadratic predictor (Reference 8-12, page 435) to determine!

eigenvalues.

Generalized aerodynamic forces required at various reduced velocities in these

analyses are usually determined by the interpolation procedure described in

Section 8.3. However, if the user desires, directly computed aerodynamic

forces can be used in the k-analysis. To help the analyst study the flutter

mechanism, various options such as the automatic preparation of plots of modal

structural damping and frequency as functions of airspeed are available.

If the redesign capability of FASTOP is to be used, the p-k flutter

analysis must be selectei1, in which case various items such as the flutter

vectors are computed.

iK
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8.4.1 Flutter Equation (.:)
The basic differential equation for a lifting surface in oscillatory

motion is:

[H IQ -[] {I [K] Ifq 0O, (8.57)

where

M is the generalized mass matrix,

[q] is the generalized aerodynamic force matrix,

[K] is the generalized stiffness matrix,

q) is the generalized coordinate vector.

The generalized aerodynamic force matrix equals the product of the aero-

dynamic matrix, [A], and the dynamic pressure, JpU2, where an element of [A]

is defined as:

A fh (x, y) dS, (8.56)rs" r(x- Y) a(s)

thwhere hr(x , y) is tre deflection distribution in the r mode, Cr~x y) isS (x, deetoYi o )'

is the presaure coefficient distribution in the sth mode, and the integration

is performed over the lifting sarface area, S. Hence, Equation (8.57) can be

rewritten as

[]{}~ [A] fq + [K] {q 0O. (8.59)

If structural damping is present in the system, the generalized stiffness

array should be modified as:

[ 11 [+ iG] [K], (8.60)

9
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where G is a diagonal matrix of modal damping and I is the idlentity matrix.

The stiffness in the jth mode is then

jj. (1 + g(j)) K5j (8.61)

where g,(J) is the hysteretic or structural damping in the jth mode. Thn

Equation (8.59) becomes

[M] P - [A] {I - [] {q -0. (8.62)

For harmonic motion, the generalized coordinates may be written as

q ) { }e'tt, where - Is time independent and P. nay contain damping.
Equation (8.62) can then be rewritten as:

[2 [M] pJ2[A] +[~~ =0. (.3

8. 11.2 k-Nethod

In the "American approach" (or k-method), since the conventional aero- "
dynamic theories are valid only for undampeO oscillations, the aerodynamic
matrix is computed for a chosen reduced frequency, k, and the A is considered

to be undamped (.m iw):

[ 2 [M] - L, [Ak)] + [il] qi 0- (8.64)

This equation may be rewritten as

[ - ) ,[M] +[A(k) q 0, (8.65)
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where the reduced frequency is defined as (866

•~k ,Uff (8.66) ' ;

where

b is a referer-° emichord

w is the frec' .ncy of oscillation

U is the velocity of the free stream.

Now. an unknown hysteretic structural damping term, g, is introduced to

bring the system into neutral stability. Applying this damping to the Jth

diagonal term of the stiffness matrix of Equation (8.65) results in:

KJJ'- (1i ig 8(j) + ig) K . (8.67)
W

For small values of damping (g*g 5 ( )<<l), this jth on-diagonal term may

be approximated by

-' ( )('l + ~ )) Kjj (8.68)

where

Substitution in Equation (8.65) yields

Defining the aerodynamic term aL 4 (k), this becomes

[ ] -[Mj + k] +. q o0. (8.t2

94

* ~ ~0 0



Solving this equation for each eigenvalue, X, one obtains the values of the

uniknown damping and the accompanying w of the systew. A positive val le of

the demping means that structural damping must be added to the system to bi irE

it Lo neutral stability; i.e., the system is unstable. A negative value has

the opposite interpretation.

A flutter analysis by the k-method begins with the calculation (or inter-

polation) of generalized aerodynamic forces, [Q(k)], for a chosen set of reduced

frequencics. Using the QR algorithm of Reference 8-32, pages 515-568, eigen-

values are determined from Equation (8.72) fur each reduced frequency. Usirg

Equations (8.70) and (8.66), the reduced frequency and the real and imaginary

parts of each eigenvalue are converted to a frequency, a required darping, and

a free stream velocity. By plotting these dampings and frequencies as functio.s

of these velocities, the critical flutter speed (the lowest nonzero velocity at

which g = O) and the accompanying flutter frequency are determined.

Having derive-d the eigenvalues of Equation (8.72), the eigenvectors arc

determined using an inverse iteration procedure (Reference 8-12, pages 619-625).

These are used to establish the uniqueness of the eigenvalues in a routine using

the Gershgorin theorem (Reference 8-12, pages 638-646).

Because of the assumptions implicit in this approach, the -ubcritic-l damp-

ing and frequency trends are generally inaccurate. Occasionally, the metho.

produces a rultiple valued function of damping vs. velocity, making it difficult

to order the roots in a routine to Automatically determine the flutter speed.

The advantage of this approach, however, is its speed; solutions to linear

eigenvalue problems are relatively easy to compute.

8..3 p-k Method

An alternate approach to the solution of the flutter equation, which gives

better subcritical trends and doea not lead to double valued functions of danp-

ing vs. velocity, is the p-k method of Reference 8-1. The generalized coor-

dinates are assured t) be damped harmonic functions; hence, A be-omes

(¥ g i)
UkU

or A = (y + i P, (8.73) "

95



22

i

where v is the d~m..pirg coefficient equal to **
n--  (with an andan. as the .

am:plitudes of succec~ive cyc~ez of oscillatio:n). Equation (5.63) then becomes

_)2, - - 0 0 (8.74)

where the available constant amplitude (undunped) aerodynamic theories =ust

be used to compute the aerodynamic matrix.

Unlike the k-method, an air speed U is row selected for which Equation

(8.74) will be solved. The characteristic equation for the eigenvalues, p,

is then written as

) () 2 P2 [] H -~ [Aoj I 0. (.5

In Reference 8-i, this equation is solved for p by the iterative Regla Falsi

method. However, it is noted in that reference that this algorithm, which

uses a linear predictor, occasionally exhibits nonconvergence. Consequently,

in the present program this algorithm is replaced by KiAller's method

(Reference B-12, pages 4354438), which employs a quadratic predictor. This

means that each root t.stimate is a arnction of the most recent three estimates.

In preparing data for the p-k solution option, the user - by specifying

in initial Pirspeed, an airspeed increment and the total u nber of airspeeds

for which solutions are desired - defines the velocity range over which the

flutter solution is to be determined. At the initial velocity, the program

makes three estmates of each root, calculates correspording genera _ ed .

aerodynamic forces and comutes F, the flutter deter=.inart of Equation i .75),

for each estimate. .tfter fitting a quadratic to t e three F's, the program

determr.ines the value of the root for which this quadratic equals zero. This

value becomes the next estimate of the root. Using the three most recent root

estimates, this iteration is continued, determinirg new estimates. ..hen the

ir-eration his convereed, the process is concluded for this root and bex:n for

the next.
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Solutions are determined for each specified velocity in the user-defined

range, using roots determined at the previous velocity as initial estimates C
at the next velocity. Optionally, the user can instruct the program to obtain

the initial estimates by extrapolation from roots at the previous two velocities.

Whenever significant changei in the slope of the damping or frequency are

detected over the usei .defined interval, the program automatically obtains

solutions at finer velocity increments. (See Figure 8.10.) Finally, when a

sign reversal in the damping part of the root occurs between consecutive

velocities, the program initiates a search to determine the velocity for which

the damping is zero, i.e., the flutter speed.

8.4.4 Flutter Analysis Features and Options

To help the user study the flutter mechanism, the program allows for the

variation, io a single computer submission, of the stiffness of a chosen mode

and of the number of normal modes (from an original set) included in the

analysis. Furthermore, the flutter results - root damping and frequency as

functions of airspeed - are presented in graphical (print-plot) form as an

integral part of the computer listing. In addition, there is provision for

obtaining CALCOMP plots of the flutter solution.

Another option is the provision tor listing modal components of the elgen-

vectors (flutter vectors) for a given velocity or reduced velocity range

(depending upon whether the p-ls or k method is used for the solution). if

requested by the user, the equivalent physical-coordinate vectors at the -

locations specified by input vibra+ion data are also calculated and displayed.

Optionally, the user can make changes to the terms .f the futter

equation by adding structural damping and by revising the generalized inertial

or stiffness matrices.

A divergence analysis can also be performed, using the aerodynamic forces

derived from a non-oscillatory condition. In which case, Equation (8.59) becomes:

*QU2 A (k 0)]tq}+ [K] {q} (8.76)
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Both [A] and K are real matrices and the eigenvalue to be determined by the 0
QP algorithm is U2 in this case. If no positive eigenvalues exist, i.e., if

2 0, the surface does not diverge; otherwise the divergence speed is the

square rooL of the lowest positive eigenvalue.

8.4.5 Flutter Vectc,:- for Redesign

When redesign is to be done in FASOP, the flutter vector (among other

quantities) is required. The flutter vector is the eigenvector of Equation

(8.74) for the critical root at the flutter speed - the lowest non-zero speed

at which the damping (the real part of the root) is zero. As described in

Section 8.4.3, the progro= automatically searches to determine the flutter
speed. The eigervialue p, of the critical root at this speed is determined

and the corresponding eigenvector, I u I (the flutter vector), is found by the

inverse iteration technique (Reference 8-12, pages 619-625).

By transposi4ng the flutter matrix of Equation (8.75) and determining

another eigenvector for p, the associated row vector, I v F, is obtained.
%bsequently, the following parameter is formed for use in the computation of

the flutter derivatives (see Section 9):

C r-, 1-.-Re LF [~ V1l + 2/k, [R Iu'rrL8k 1 (8.77)
Im [Ivj T [j 1] Jl

where Q was defined by Equations (8.71) and (8.72). The derivative

is obtained by differentiation of the generalized aerodynamic force inter-

polation polynomial, described in Section 8.3.

1I.
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Sectio'n 9

SIZING FOR COMBI!IED FWU'"ER V6D

STRENGTH O Euimnars

9.1 SIMW4AY

Several methe'4s for sizina the finite elements of a lifting-surface struc-

tural idealization to achieve minimum weight design under combined strength and
flutter-speed requiremen~ts were developed and evaluated. Two basic categories
were considered: methc-as bas~d on a combination of energy principles and opti-

mlity criteria, and procedures employing numerical-search techniques. Drawing

upon the experience gained from studies of both of these basic methods, a re-

sizing algorithm wits developed that employs a uniform-flutter-velocity-deriv4tiv

optimality criterion for flutter-critical elementoi and the fully-stressed-design

criterion tor strength-critical elements. The final result is a practical, auto-

mated approach for dealing with large-scale idealizations having both structural

and mas.-balance design variables.

I'Ar sectlor ;-ovide&. a jummary of the major f'.nd~ni from the evaluation

of the candidate 'flutter res!zing methods and the factors that led to the selection

of the firal algorithm, whichi is discussed in detail. A mnore complete description
of the methods examin~ed, their underlying theory anti assumptions, and the results

they produced for a rep%-esentative example wing structure are preserted in Refer-

ence 9-1.

9.2 EVALUATION OF FWTTER RESI' 11IG ALGORITH(S

For a structure subjected to a single fluttor-speed constraint, and no

other constraints such as those imposed by strength and mirnimun-manufacturing-

gage requirements, it can be shown Coat for a minimum-weight design, the eriva-

tives of the critical flutter speed, 'Ii, with respect to the design variable

weights, mi, must be equal; that isb

aV constant 19.1)

for all "i" structural fntelmtsand mass-balance wcights.

This "optimality criterion" provides a standard of local optimality under

the limited condition of a single design constraint. However, realistic strucLural
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designs involve many constraints in cc-nbination (e.g., strength, flutter speed,

minlmwa manufacturing gages) and their respective, separately*governing opti-
mality criterla must be blended into a composite critetion. Moreover, to be of

,real value. it must be possible to satisfy such a composite criterion by a practi-

cal and efficient resizing procedure. These considerations have strongly influ-

enced the development of the combined flutter/strength resizing algorithm in

FASTOP.
S

The finally selected approach evolved from an extensive study of twc
classes of optimization methods. The first included optimality-criteria methods

based on energy concepts; the second emphasiz.,d direct weight reduction by em-

ploying numerical-search methods. For comparison purposes, all of the :Ondidate

procedures were applied to the intermediate-complexity-wing structure described

in Sibsection 11.2.1. The objective was to resize an initial ful-y stressed,

strength-governed design to schieve a 30% increase in flutter speed with a minimum

increase in weight. The following paragraphs su-narize these study efforts and
provide the background that led to the final resizing algorit m.

9.2.1 Energy-Based Otimality-Criteria Methods

Althou,h it was recognized early in the study that optimum resizing to in-

crease flutter spoed sho ld aim toward achieving uniformity among the flutter-

velocity derivatives of all resized elements, it was not evident that a simple

resizing equation could be formulated for satisfying this criterion. Because of

the rather complicated nature of the expression for these derivatives, as pre-

viously developed by Rudisill and Bhatia in Reference 9-Z, it was felt that it
would be difficult, if not impossible, to devise such an equation. Yet, it was

reasoned that for practical reuizing of very large structur. 1 id.alizations, some

flutter-r-cadiing procedure that embodied the same basic simplicity as the fully-

stressed-design ipproach for strength resizing should be developed, even if it was

npcessary to compromise the correct optimality criterion. Along these lines,

several procedures based on approximate optimality criterA ani simple energy-

based resizing equations were conceived and examined. The hope here was that

even if the correct criterion was not se.tisfied, the r.sulting d,t.ign would still
be efficient, altbvugh not optimum.

The twc simplest versions of these approximate methods were ider.tified as

the "torsion mode fully stressed design" and the "flutter mode fully stressed
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design" procedures. They were selected for study mainly because they could be

integrated very simply into an existing fully-stressed-design progr&b by the mere

addition of pseudo-load conditions, acting along with the actual applied loadlihg

conditions, in the resizin,, process. The first was based on assumed propartion-[

ality between 'the fundamental torsional freque y and the flutter-,peed, and

attempted., '.n an approximate way, to optimize z'or torsional frequency. It used a
properly scaled set of inertial loads in the torsion mode as a single additional

pseudo-loading condition. The second method used a set of inertial-plus-aero-

dynamic loading conditions based on the complex flutter mode. In both methods,

resizing for strength and flutter-speed requirements was performed simultaneously,

so that interaction between the two requirements due to internal load redistri-

bution was achieved automatically. I,
Two somewhat more sophisticated, but still approximate, procedures sought

to achieve "uniform frequency derivatives in the torsion mode" and "uniform mean-

strain-energy density in the flutter mode." The first of these approaches still

relied on assumed proportionality between flutter speed and torsional frequency,

bt treated the frequency-6ptimization problem in a more exact way than in the

previous torsion-mode fully-stresaed-design approach. The second method, which

received previous attention by Siegel in Referer,:e 9-3, resized all flutter-criti-

cal elements so as to obtain equal values of avereee strain energy per unit weight|
during a flutter-oscillation cycle.

Three of the above methods led to convtrged designs that satisfied the re-

quirement of a 30% flutter-speed increase with approxir.-.ately the same increase in

structural weight. One method (the one which attempted to achieve uniform fre-

quency derivatives i, the torsion mode) behaved so poorly that resizing was aborted

before reaching the desired flutter speed. To evaluate the final results for the

converged designi, the flutter-velocity derivatives of the elements that were re-

sized to meet the flutter-speed requircment were calculated and examined for uni-

formity. The conclusion v % discouraging in that no tendency toward uniformity

existed, and no confidence could be placed in any of the methods. Concurrently,

results from parallel studies (discussed in the next subsection) that used numeri-

cal-search techniques in conjunction with fluttr-velocity deri.vatives confirmed

the existence of significantly lighter designs than those obtained with the

previously discussed approxiate optiality-criteria methods.
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Although none of the preceding merhod3 were acceptable in themselves, the

knowledge gained from their development became extremely valuable. All of the

methods eimployed energy-type concepts -- both in establishing their approximate

optimality criteria and in'obtaining simple and effective resizing formulae for j
satisfying these criteria. It ther. became evident 'that by extending these energy

concepts, it war vci'.ble to cast the expression for the exact flutter-velocity

derivatives of R..i.. :,ce 9-2 into a new form that was identifiable in terms of

generalized energy quantities. Moreover, it was also possible to obtain a eimple

strain-energy-based resizing formula for achieving the desired state of uniform

flutter-velocity derivatives among structural elements.

When the formula was applied to the example wing structure, the final de-

sign achieved the required 30% increase in flutter speed with a weight increase of

onlWabout one-fourth of that required by the previous methods. Also, it was ob-

served that at each intermediate design step in the overall resizing process, the

flutter-velocity derivatives of the flutter-critical eltments exhibited a high

degree of uniformity, thereby demonstrating that the resizing formula embodied
excellent convergence characteristics. Nevertheless, since the method relied on
strain-energy-related quantities, an additional or more general redesign formula

was needed to cor.sider mass-balance variables. The rume.rical-search methods dis- S
cussed next, r.s we.l as the final method selected for use in FASTOF, have the

capability for dealing with mass balance.

9.2.2 1hunerical Search Procedures

Paralleling the evaluation of the energy-ba.-M methods was the development

ar.d study of several numerical-search procedures that all employed the previously

referenced expression for the precise tlutter-velocity derivatives. A major dis-

tinction betw4een these procedures and those already discussed is that the n.umerical-

search methols do not rely on the definition and enforcement of an optimality cri-

terion. Inste. I, concepts of travel in design space are employed to seek out a

near-minimum-we.,,,ht design that satisfies the flutter-speed constraint without

compromising strength requirements.

Of the four rumericl-search procedures studieu, the first two were in the

category of procedures for initially achieving the desired flutter speed. The

latter two were techniques for minimizing structural weight after the flutter

speed target was achieved. A complete reizing method required that procedures
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in both categories be used sequentially.

In the first category, the "flutter-velocity-gradient redesign" procedure

was a straightforward approach that added increments of weight to structural ele-

kents in proportion to their flutter-velocity lerivatives. The second procedure,

"weight-factored-gradient redesign", was a refinement of the first, wherein the

incremental weight added to each element was factored by the element's total

weight. This was dore in order to arrIve at the desired flutter-speed constraint

surface with a lower-weight design than thet obtained in the previous method,

which tended to add excessive weight to the lighter structural elements. Both

techniques were applied to the tntermediate-complexity-wing structure in a step-

by-step resizing mode, arriving at the desired flutter speed with much smaller

increments of structural weight than =-ny of the previously described approximate

optimality-criteria methods.
To then travel along the constraint surface to a minimum-weight design point,

a "biased tangent" approach and the "method of feasible directions" (see References S
9-k and 9-5) were each employed separately, starting with the last design obtained

by the flutter-velocity-gradient redesign method. Both procedures led to final

designs having essentially the same weight as that achieved by the last energy-

based optimality-criteria approach that aims for uniform flutter-velocity deriva-

tives. However, although both procedures yielded good results, considerable

difficulty was experienced in developing an efficient automated step-size deter-

mination procedure.

In summarizing the findings of these numerical-search studies, two major

points should be noted. First, the requirement for a two-phase redesign operation,

coupled with the problem of step-size determination, led to the conclusion that

these procedures are computationally inefficient and not readily amenable to com-

plete automation. Second, the biased-tangent and feasible-direction methods yield

the same design a that achieved by the energy-based resizing method that aims for

uniform flutter-velocity derivatives, thus giving added confidence in the superi-

ority of this optimality criterion.

9.3 THE SEL=IED FLUTTER RESIZING ALGORITHM

From the results of the studies described in the previous subsection, it was

concluded that the finally selected flutter resizing algorithm should be a direct

rather than a two-phase procedure that achieves a state of uniform flutter-velocity

1o~4
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derivatives for flutter-critical elements. Moreover, for the overall problem of

determining a near-mnimum-weight design that satisfies both strength requirements

and a minimum flutter-seed constraint (for one critical flutter mechanism), the

resizing procedure shoulY' aim toward a composite optimality criterion with the

following characteristics:

' flutter-critical elements have uniform flutter-velocity S.
derivativws for the MIch number and altitude of the prescribed

critical flutter conl.<tion,

* Strength-critical eleaentu are fully stresse for at least one

of the specified de.+ie loading conditions,

* Other elements are at a rinimum or maximum manufacturing gage.

To achieve the uniform-fl: .ter-velocity-derivative criterion, the

following resizing formula is used in FASTOP:

aVf)

Bitarget

where r m mrn are the ith design variable (structural I
old new element or mass balance) weights before

and after a resizing step, respectively,

(aVf/'mi)old is the flutter-velocity derivative of the

ith design variable before a resizing

step, and

(aVI/nmi)target is an approximation of the desired

uniform positive value of the derivative

after a resizing step, to be discussed

in Subsection 9.4.l.

105

S

i 
- .

.. . . . . .... . ' : ; " ; +' , " + -+ " . . ... ; .. . . . . .. . .



This formula resulted from a simplification of the equation that was used in tne

last of the energy-based optimality-criteria methods discussed earlier. It,

however, does not suffer from the shortcoming of its predecessor, in that it is

mathematically capable of dealing with mass-balance as wall as :tructural decign

variables. When this rerizing technique, hereafter referred to as the "velocity-

derivative-ratio method," was applied to the same example wing structure used in

the previous study efforts, it displayed excellent convergence characteristics,

rapidly leading to a desJgn requiring the same weight increase as those obtained

by the best energy-based method and by the numerical-search procedures. When mass-

balance design variables were introduced into the example problem, the ability of

the method to cope with this type of variable, in combination with structural

design variables, was also verified. The results of further demonstrations of

the application of this method ii optimizing realistic structural designs is

presented in Section 12.

9.3.1 Calculation of Flutter Velocity Derivatives in FASTOP

As stated previously, in the lat er part of Subsection 9.2.1, it became evi-

dent in studying the energy-based optimality-criteria methods, that it is possible to

cast the analytic flutter-velocity derivatives of Reference 9-2 into a new form that

is identifiable In terms of generalized energy quantities. The development pro- S

ceeds as follows:

Consider the flutter-node vector (U) and its associated row v.ctnr (V) T

in the structures mathematical model, to be normalized such that

vT (EM] + EA])fUI - 1. (9.3)

Rudisili and Bhatia's final flutter-velocity derivatives (Reference 9-2)

may then be expressed in The following form:

WVf V f[I 2
22 Re iVJ [8[K]/m - Wf aEMJ/ miJ(U)

T 2

'~1 IM (B."K)/ mi - Wfacm)/ami](U))

2t

>Re (( 3[~A]/ k)(UJ) + ~ (9.I4)
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model; wj. isth anglarflutter frequncy; k isth: reue frqunybl/"

in which b is the reference wing semichord; aund (A) is the complex aerodynamic

force matrix compatible with thei-structural degrees of freedom of the surface~.

If the t element's stiffness and mass matrices, oKth and Mc, vary linearly

with its design variable, Equation (9.4) can be manipulated into a nev "energy-

denel by" form:

avf Vf (V T[KiMUR) [vI])T(Ki](UI3

f Vf I(R3T) J(R 'V)(
1 f 1

(rv"T[i(U + Ti IJ) (9.) ! :

or-,

uSE (9.6)illl

-if

where the subscripts R and I indicate the real and imaginary components, -i

respectively, of the flutter vector and its associated row ector, and 1 <,

where C is a real quantitT defined by

C -'R ({v1T([A]I'k)fUJ), + 2/k • 97
I fV1](aEAj / k)(V T

In Equation (9.5), terms have been grouped into two categories. The

~first, SEDi, includes what may be interpreted as a linear coobinatir of
gnrledstrain-energy-density trs Thseodcategory, KEDi, contains

a similar set of generalized kinetic-energy-density terms. This grouping ofterm ss adopted in the formulation and prograain of the flutteir -velocity
derivatives to enable the ASTOP user to readil compare the separate contri-
butions of each element's stiffne.s .nd ma s to its derivative. An example f

In Eqato (9) em-aeengopditototgre. The

fi iaii

gt so
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the usefulness of this feature occurs when idratifying locations in the structure

vt-!re mass-balance could be effective in increasing a surface's flutter speed F
(i.e., where lirge negative KED's exist). This concept is discussed further in

Subsection 10.5.2.

In order to compute the derivatives defined by Equation (9.5), it is necessary

to first transform the flutter vector and its associated row vector from I,-"e mdal

coordinates used in the flutter analysis module to absolute structural coordinetes.

The different transformation relations required for cantilevered structures and

free-free structures are discussed below.

(a) Cantilevered Structures - In cantilever analyses, the transformation

between modal and structural coo-dinates utilizes the normal node

sha es (X] (see Equation (7.9)) of the dynamics model, and matrix

[B] which transforms displacements from dynamics coordinates to

structures coordinates (see Equations (5.6) and (5.7)). If lower

and upper case symbols are respectively used to denote vectors in

modal coordinates and structures coordinates, the required trans-

formations take the form

U1 IQ luI , v T -vI TL Q T  (9.8)

where

[QI IBf [xl (9.9)

(b) Free-Free Structures - It may be recalled that the basic vibration

equation for free-free analyses (see Equation (7.20)) was cast in terms
I
T

of relative dynamic displacements J"R I. Thus, Jul and iv are

transformed to relati structural coordinates by the relations

{ u =4 u[%}u) , V T . ( R)T]T (9.10)

I r

where
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Now, rigid-body motion of structures points depends on both the plug motion
(see-Equation (7.19))1 and matrix JXSJ which defines those displacements for

unit plug Ac.ion, (see Section 7.4). Accordingly, d are transformed

to absolute structur coordinates by the relations

t Ub,5
1 _ [QItuI ~, 5 Jjb I I T [Q]JT k9.12)j

where

The transformation to absolute coordinates given by Equations (9.12) and (9.13)

is used in the computation of the kinetic-energy-density expression ir Equation

(9.5). Equations (9.12) and (9.13) can also be used in the computation of the

strain-energy-density expression. However, as strain-energy-density is only a

function of relative displacements, Equations (9.10) and (9.11) are used fcr that

computation since better numerical accuracy is achieved.

9.3.1.1 A Theoretical Consideration. In the computation of the flutter-velocity

derivatives, the normalization rtep defined in Equation (9.3) and the computation

of the coefficier.t C defined by Equation (9.7) are actually carried out directly

in modal coordinates using % , the generalized air force matrix (instead of [A]),
and the generalized mass matrix (instead of the structures-model mass matrix).

Moreover, the flutter vector and its associated row vector are also initially

ccmyuted in modal coordinates before transforming to structural coordinates.

Now, in modal coordinates, the flutter equation takes the turm

2 u ([Mm] [+ )~} 0 93.

where [K] [Mm and [p] are the generalized stiffness, mas and t:arccnamjc

matrices, respectively. That is,

[K]l - [QTf [1][1 ] (9-15a)

rim r.1TiM 91b
[L T Ai Q (9-15c)

1
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where IKI IMI and JAI ar the structural stiffness, mass, and aerodynamic

matrices, respectively, and IQ] is the transformation matrix defined in Equation

(9.9); for a free-free analysis, matrix [QAj (defined in Equ-tion (9.13)) replaces

[QI in Equations (9.15). If Equation (9.14) is used as the starting point, the

derivation of the flutter-velocity derivative expression results in an equation

identical to Equation (9.4) except that all vectors and matrices are in modal

rather than physical coordinates; thus terzs of the form iv}T 4 lU and

Ami

,1 T !W1 lul arise. In order to evaluate these torms, Equations (9.15a) and

(9.15b) must be used. Now, the columns of [Q] are simply the vibration mode

shapes expressed in structural coordinates. If these mode shapes are assumed to

remain constant during a variation in mi , it follows from Equations (9.15a) and

(9.15b) that

[.1
Ami

Am ii

It is noted that the terms on the right-hand side of equations (9.16) are

precisely the tern.m obtained by substituting the transformations of Equations

(9.8) or (9.12) into Equation (9.5), as described previously. Thus it follows that

the computation of flutter-velc.,ity derivatives within FASTOP assumes the IQ]

matrix to be constant, i.e.,the vibration mode shapes, expressed in structural

coordinates, are retained as the generalized displacement vectors during a

variation in the design variables.

9.4 rPLEMTATION OF THE COMBINED STRENGTH AND FL TMrR RESIZING PROCEDURE

9.4.1 Determination of a Design Change for a Desired Flutter-Speed Increment

In applying the flutter resizing formula of Equation (9.2), an iterative

procedure is used to determine the value of the target derivative, (WVf/mi)target.

The procedure makes use of the assumption that for small design changes, the

flutter-velocity derivatives may be used to predict a change in flutter speed,

AVf ,d as a linear combLation :f element weight changes, 6mi; that is

pred
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t, f (9.17)

To start the iteration, a target derivative of 80% of the average of all

positive derivatives is assumed. Equation (9.2) is then used to determine a p
new weight, min, for each variable. The new weights are then adjusted so that

new
no design variable (a) falls below that required for strengt.h, (b) violates mini-

am and mayvinm gage constraints, or (c) is reduced by more than the percentage

specified by user-supplied "max.-cut" parameters. (These conjiderations are dis-

cussed more fully in Subsection 9.4.2). The resulting incremental weights,

i• mnew sold are then used in the linear relationship 3f Equation (9.17)

* to compute a predicted velocity increment, AVVf , which is then compared with
pred

the desired velocity increment, &Ve.. Two convergence criteria are used for
fdes*

this comparison, satisfactory convergence occurs when I '

j V A < a (9.18a),'-4
I des f pred

9_ when

I des p ed (9.18b)

Alldes < C2

where A and are specified by the user. If neither criterion is satisfied, the

target derivative is automatically adjusted within the program (see discussion

below) and the entire procedure is repeated to obtain another trial redesign. This

; iterative process continues until either a) at least one criterion is satisfied,

* or b) it is established that neither criterion can ever be met. For the latter

case, wherein the design does not change from one trial resizing to the next, tae

last trial design is accepted; this situation may arise, for example, due to the

presence of maximum gage constraints.

The automatic adjustment of the target derivative from one trial redesign

to the next proceeds in the fQllowing manner. Suppose that the first trial redeign

indicates that the predicted velocity increment is larger than the desired increment.
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as ondition hree & A&Vfdec) the target derivative is

repeatedly increase by 10 of its previous value in each of the ensuing trial

resizings. Eventually, when the predicted increment becomes .maller than thedesre inreen (& e Vf ), the target derivative is repeatedly 
'

decreased by 1 of its previous value; when &Vf pred again becomes larger than

aV=., the target derivative is successively increased by 0.1 of its previous

value. That in, ea.ch time &Vfre "crosses" AV the program changes both the

pred fdes
sense and magnitude of the target derivative adjustments (+10%, -1%, +0.1%, etc.).

As mentioned above, the process terminates when Equation (9.18a) or Equation (9.18b)

is satisfied, or when the design does not change from one trial resizing to the next.

Clearly, the initial supposition (Vf>red Vf ) in the first trial redesign

is imaterial; if the opposite were true, the starting target derivative would be

decreased, not increased, by l%.

9.4.2 Definition of "Max.-Cut" Parameter.' and Representation of Strength and

Manufacturing Constraints when Resizing for Flutter

When using the flutter resizing equation, Equation (9.2), the question or

how to resize elements with very small, or even negative, deriv:atives must be

addressed. In such cases, it might appear desirable to reduce the elemert's size

to its value dictated by strength or minimum-goge requirements. However, in some

cases it has been found that the stability of the resizing procedure is improved

if the reduction in a structural element's size, in a single redesign step, is

constrained to a specified precentage of its previous value. Since it has not

been found necessary to apply the same restriction to mass-balance design variables,

the user may specify a separate reduction factor fqr mass balance (normally zero,

i.e., no restriction). These reduction factors, referred to as the "max.-cut" par-

meters, are discussed fUrthir in Subsection 10.5.4.

In addition to these "mex.-cut" constraints, strength requirements and mini-

mum and maximum manufacturing gage limitations must be considered when resizing

for flutter. The interaction of a flutter-speed constraint with strength require-

ments is accounted for by successively optimizir3 for strength and flutter, with

the strength-designed members from the Ally-stressed-desi3gn procedure (ASOP), (see

Section 4) being considered as minimum gages in the next flutter optimization, and

vice versa.
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An'element's minimum and maximum anufacturing gages, tmi and t aremi n max~ r

supplied by the user during the initial pass through the strength analysis and

redesign module of FASTOP. The output of that module includes element gage size,

t, and stress ratio, 3 (actual stress/allowable stress), which, along with tmin

and tmax, are transferred to the flutter resizing module. The stress ratio will

be very close to unity for a stress-critical element, but it will be less than

unity for a flutter-critical element, i.e., for an element that has been rasized

for flutter (without encountering strength or minimum manufacturing constraints)

in a previous pass through the flutter-resizing module, The minimum strength-

adequate gage size for any element is therefore the product of its stress ratio

and associated gage size, i.e., ts a a x t. Thus, when resizing for flutter, an

element is not permitted to be sized below tmin or ts, whichever is larger. Also,

the element cannot be sized to a value greater than tM.

9.4.3 Multiple Flutter-Redesign Steps

FASTOP allows the user the option to perform successive 'lutter-redesign

steps without computing new normal mcdes of vibration after each step. In this
"coupled-mode" approach, the last set c. computed normal mode shapes are re-
tained as assumed modes and the changes in the modal stiffness and mass matrices,

[]and [14M], are given by the following expressions.
Case (a). Cantilevered Structure

[&Km 2 [ T[][ ~ [T ~(9.19)

Case (b). Free-Free Structure

S

[K = [R1T[~jk] Eti m]= KQA1[04 [CIA] (9.20)

1
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Here an r ~ ~n~tv ~ceel..Lchanges inthe stuctures-

mroel stiftec and mass matrices since the last normal-mode computation, and J '

izd -ae toe-trntcratibife defined in Equations (9.9), (9.11) and (9.13).

obtained by adding the above incremental matrices to the orthogonal ones corre-

sponding to the last set of normal modes'; that is

~minew L L(9.21)

and

(9.22)

Note that thse new matrices are no longer diagonal (i.e., the original normal-

mode coordinates become "coupled").

The following section describes this interactive resizing process from the

user's point of view.
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Section 10

USE OF' FASTOP FOR IN1rEGRAT ANALYSIE AN~D DESIGN

101SUMM~ARY

FASTOP is an analysis and rede.-ign tool that can be used to generate near-

minimum-weight designs for aircraft structures subject to combined strength and~

* flutter-speed- requirements. Two basic programs are involved; one Is primarily

* concerned with the static strength problem, and the other addresses the flutter

condition. Ixu the typica2 redesign process, each of the programs is uxecuted

several times. Communication between the programs ensures that the design re-

quirements for one type of constraint are not intentionally vriolated. by the other.
The material contained in this section is intended to guide a user through the

entire redesign procedure. Numerous suggestions are put forward based upon the

experience gained in the solution of the dtmonstration problems to be discussed

* in Section 12.

10.2 ORGANIZATION OF FASTOP

The flutter And §Irength 2ptimization Backage, FASTOP, is comprised of a

Strength,2ptimization Program, SOP, and a Flutter 2ptimization Program, FO~P.

* As shown in Figure 10.1, each of these major programs is organized on a modular

basis. The modules are de!'Ined as follows: 4

-SOP Mo~dules

PLAM - Au~cmated Load Analysis Module

ATAM - Automated Transformation Analysis Module

ASAM - Automated Strength Analysis Modale

ASOM - Automated Strength Optimization Module

FOP Modules

AVAM - Automated Vibration Analysis Module

AFAM - Automated Flutter Analysis Module

AFOM - Adtamated Flutter.Optimization Module

These acronyms will be used to facilitate the discussion throughout this section.
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Figure 10.1 Modular Orgenizetion of FA~T0P

10.3 SEQUENTIAL USE OF THE STREN~GTH AND FLUTTER OPTIMIZATION PROGRAMS

SOP and FOP my be executed individually or, if desired, they may be run

back-to-back as a multiple step job. Theoretically, there is no restriction on

the number of SOP and FOP steps that may be executed in a given job. However,
practical considerations such as running time and the normal desire of the user

to examine the output of one program before executing t1.1 next will limit the

number of steps. It is recomended, therefore, that generally no more than twoS

steps (either SOP-FOP or FOP-SOP) be executed in a multiple-step job.

Figu~e 10.2 illustrates the first four steps in a typical redesign pro-

cedure. Notice that SOP must be the first program executed in the entire pro-

cedure and that the- two programs alternate thereafter. As shown in the figure,

Start

Ta,6eALT_ _ ~ A--

SOP r nFO Tape 4., TaeB OP Tn '

Tape _ aeD

'igure 10.2 Basic I/O Tapes in FASTOP
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data is transferred t, -een programs by means of magnetic tapes. Each progrwa
generates two basic oatput tapes; one is intended for the next SOP step and the L
other is intended for the next FOP step. The general contents of these tapes

are brief y discussed below.

Tape A - This tape, referred to as the "SOTOSO" tape, is generated by SOP
for use in the subsequent SOP step. Essential data such as structures model
geometry, boundary conditions, applied loads, etc. are passed via this tape.

Tape B - This "SOTOPO" tape ii generated by SOP and passed to the next
FOP step. Latest member sizes and the associated flexibility (or stiffness)
matrix are among the data contained here.

Tape C - FOP accepts member sizes from the above "SIOFO" tape, adjusts
them by the flutter-resizing algoritm and passes the updated member data to
the next SOP step via this "FOTOSO" t~pe.

Tape D - Data peculiar to FOP, such as mass data, mass balance locations,
etc., are passed from one FOP step to the next by means of this "FOTOFO" tape.
1o.4 USE OF TRE STRIOTH OPTIMIZATION PROGAM (SOP)

At any stage of the redesign procedure, SOP can be used in one of three

possible modes:

(a) to 4imply compute the dynamics model flexibility matrix [A], or the
structural stiffness matrix [] p

(b) to stress analyze the structure and then cmpute [A] or [KI]

(c) to perform one or more FSD (fully stressed design) cycles and then

Compute [A or [KJ

Use of one of these modes in any SOP step does nqt preclude the use of a different

mode in a later step.

10.4.1 Conventional Use of SOP
The suggested -procedure is to use mode (c) for the initial SOP step and then,

depending on the degree of scrength/flutter interaction encountered, to use either
mode (a), (b) or (c) in subsequent SOP staps. Whenever mode (c) is employed, the
user must specify the number of FSD cycles to be performed. For the initial SOP
step, experience has indicated that four redesign cycles are normally adequate to
transform a preliminary design (e.g., one having uniform gages) into a converged

11



fully stressed design. However, a single cycle should be sufficient in later SOP

steps. In fact, the results of the demonstration cases described in Section 12

indicate that strength redesign nould have been bypassed in all intermediate re-

design cycles (mode (a)) with a final strength resizing near the end of the

flutter redesign process. The user must also specify, in the initial SOP step,

which, if any, of the total set of elements are to be permanently excluded from

the strength resizirng process. This elimination becomes necessary, for example,

when some elements are adequately modeled to simulate the stiffness of a structure

'but -re inadequately modeled for stress analysis and redesign - as when honeycomb

core is modeled with rib and spar webs. Actual exclusion of an element is effec-

ted by simply setting its minmum and maximum allowable gages equal to its initial

(desired) gage. Note that since these same allowable gages are transmitted to

FOP, these elements are in fact withdrawn fran the entire redesign procedure.

When mode (b) is used, strength resizing does not take place, ht the ele-

ment stress ratios (actual stress/allowable stress) are updated to define revised

strength gage requirements of flutter design variables for use in the subsequent S
FOP step. This enables FOP to avoid violatiLg strength requirements when resizing

for flutter.

10.4.2 Use of SOP with Strength-Governed Designs not Generated by SOP

One other important use of FASTOP occurs when SOP is not intended to be
used for stress analy31X or redesign. This condition arises when u trength-ade-

quate design, generated using criteria other than those embodied in SOP, is found

to be flutter deficient. Under these circumstances, mode (a) should be ured in

all SOP steps and, in the first SOP step, the minimum allowable gage of ech eV,-

ment should be set equal to its initial gage. This will ensure that any subse-

quent flutter redesign in the FOP steps will lead to a flutter adequate design

in which member gages are nowhere less than those of the initial design.

10-.b3 Initial Design

Although resizing may have occurred in the first SOP step, the resulting de-

sign of this step - not the input preliminary design - is referred to as the S

initial design. It is this initial strength-adequate design which may be flutter

deficient and require subsequent flutter/strength resizing to achieve an adequate
design. If so, all changes in design parameters, such as flutter speed and total

weight are defined with respect to the initial design.
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10.5 USE OF TH FLUI=ER OPTIMIZATION PROG V4 (FOP)

There are five possible modes in which FOP can be used:

'(a) to perform a vibration analysis

(b) to perform a flutter analysis

(c) to perform both vibration and flitter analyses

(d) to perform vibration and flutter analyses and also compute

flutter velocity derivatives

(e) to perform vibration and flutter analyses, compute

flutter velocity derivatives and then perform one or more

-cycles of flutter redesign (each redesign cycle is followed by

a "copled mode" flutter analysis and computation of flutter

velocity derivatives)

It is not unlikely that each of these modes will be exercised at some point in

* the entire redesign procedure.

10.5.1 Determination of Critical Flight Condition

After the first SOP step, the user must determine if the initial design

is flutter adequate. The first requirement is to obtain a realistic dynamic mass

matrix for the initial design. This task is normtlly the responsibility of a

weights engineer who must account for the weight of detailed structural items

(rivets, fittings, etc.), and other items (e.g., engines, fuel, actuators, ex-

ternal stores), as well as the idealized structural weight. FOP, however, does

have the additional capability of autcmatically generating a dynamic mass matrix

by using the idealized structural weights in conjunction with nonoptimum factors

(see Section 10.5.3) and additional-mass data supplied by the user. The next step

is to perform a series of vibration and flutter analyses for various flight condi-

tions in order to determine the critical condition from the standpoint of flutter. p
The vibration analysis need only be done once for each weight condition, either

independently (mode(a)), or in conjunction with the first flutter analysis for

that weight condition (mode (c)). In any event, the vibration data is saved on

tape and used in subsequent flutter analyses (mode (b)).

11
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10.5.2 Initial Mass Balance Data

If a design is flutter deficient and the user intends to include mass

balance in a redesign study, the location and an initial value of each mass hal-

ance must be specified. Experience has shown that the choice of this initial

Cqta can have a significant effeact on the subsequent redesign behavior. For

example, a case was encountered in which the effectiveness of a mass balance de-

pended strongly upon its Initial value; small initial values were not useful (nega-

tive flutter-velocity' derivativei) and were subsequently eliminated from the de-

sign, while larger values were found to be very effective. Accordingly, it may be

profitable to do a small separate mass-balance study (mode(d)), varying the Initial

values and locations. The resulting flutter-speed increments and mass-balance

velocity derivatives should guide the urer in the selection of good initial mass-

balance data. Note that the velocity derivatives of the structural e32ments also

contain useful information. Specifically, the distribution of the .inetic-enercy- O

density (KED) components of these derivatives is a direct measure of how flutter

speed will be affected by small mass increments throughout 4he structure;

mass increments are most beneficial in regions of large negat~ve 1ED components.

I. is also suggested that the initial mass-balance data include a number of

selected "dummy" locations where zero values of mass balance are specified. By 0
means of this contrivance, the user essentially "reserves the right" to introduce

real values of mass balance at these locations in any subsequent FP step; that is,

after the initial FOP step, the user will have the option of changing the mass

balance value at any location specified in the initial data.

Finally, one last point must be made regarding mass-balance locations. Con-

sider an initial mass balance, mi. Unless the automatic mass generator option is

being employed, the user must insert m j directly into the initial dynamic mass

matrix at the translational degrees of freedom associated with its dynamic model

node point, "d". However, since all redesign, structural as well as mass balance,

is accomplished in the structures model, any incremental mass balance a mj is

first assigned to structural node point "s" (specified by the user) and then trans-

formed to the dynamics model by means of the transformation defined in Equation

(5.10). It is essential that the transformation of amj from node s be made

directly to node d and to no other dynamic node. The user should keep this re-

quirement in mind when creating the force beaming table that prescribes the ben -. ig

of unit loads from dynamic nodes to structural nodes. This problem does not &rise
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when the automatic Mass generator option is employed because both the initial ard

incremental mass balance are then specified in the structures model and trans-

formed to the dynamics model.

10.5.3 Flutter Redesirn Elements/:onoti:.:r Factors

After the initial mass-balance data has been specified, the user should f
indicate which, if any, of the total set of structurul elements are to be perma-

nently excluded from the flutter resizing process. As a minimum, those elements

which were previously eliminated from resizing in SOP should likewint be ex-

cluded in OP. The user msay now also introduce nonoptimun factors for use in

the SOP/FOP redesign process - unless, of course, these factors were already

introduced in conjunction with the automatic mass-generator option. 1onoptimmua

factors are intended to account for the fact that there is incremental weight,

other than that of the prL-ary structure, kssociate4 with the redesign of each

element; for example, when redesigning an element with a nonoptimum factor of

1.2, the true incremental weight would be taken to be twenty percent larger ttna

the computed incremental structural weight of the finite element.

10.5.4 Basic Parameters for Automated Flutter Redesign

Whe-ever mode (e) is exercised in a FOP application, the user must specify

input data to control the number of redesigns to be accomlished in the step,

the desired flutter speed step sizes, etc. Some important parameters are dis-

cussed below.

10.5.4.1 Flutter Band. Let Vf and -e s denote the current flutter speed and

the desired final flutter speed, respectively. Whereas speeds much larger than

Vfdes are undesirable because of the weight penalty associated with the extra

speed, values nominally n excess of ' fde -re considered to be acceptable.

Thus, the user must specify both Vfdes an" an additional parameterc1, in order

to define a "band" of acceptable flutter speeds; it is suggested that this band-

width not exceed one percent of Vfdes, in which case the band will extend from

fdes to 1.01 fdes-

10.5.1.2 Step Size/Tormal vs. Coupled Modes. A step size parameter, :BAR, and

a parameter defining the maximum permissible number of automatic redesib, steps,

:7IX, are also required by FOP. The program first undertakes to raise (or lower)
the flutter sreed from " to a value in the center of the flutter band, V-, in
:0R approximately equal speed increments; thereafter, each successive redesi.
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attempts to get to V* directly. Exccu-tion continues in this manner until the

design c nverges, or until NFIX redesigns have been effected. The first flutter

analysis in the foregoing drocedure utilizes normal modes of vibration, but all

subsequent analyses for modified designs are based on a coupled mode approach

utilizing the original normal modes together with modified generalized mass and

stiffness matrices including off-diagonal terms. Experience has indicated that

coupled mode results are somewhat unreliable, and it is therefore recommended

that generally only one redesign step be performed in each FOP application, i.e.,

the user '.3 advised to set NFIX - 1. This restriction is not very severe because

studies have shown that good results can be obtained with fairly large step sizes

and consequently a small number of redesign cycles, when the flutter analyses and

velocity derivative computations are based on revised normal modes. For example,

the flutter speed of the Intermediate-Complexity Wing (see Section 12) was in-

creased by thirty percent to a nearly converged optimum design in just four s3ngle-

redesign FOP steps.

10.5.4.3 'Max.-Cut" Parameter. In preliminary studies of the aforementioned

Intermediate-Complexity Wing, it was found that a few elements were undergoing

severe fluctuations in gage size from one flutter redesign to the next. The

phenomenon was attributed to the fact that, due to the coarseness of the model,

the load px.ths were very sensitive to design changes. This stabt!.ty problem p
was resolved by simply not allowing any gage size to be reduced by more than

twenty-five percent in any single redesign, i.e., the "max-cut" parameter, D,

was set equal to 0.75. Difficulties of this sort did not occur in the redesign

study of the all-movuble stabilizer - for which a very detailed model existed.

Indeed, the entire resizing procedure progressed very smoothly and no restriction

had to be imposed on gage size reduction (D 0.0). Accordingly, the user is

advised to begin the redesign procedure with D = 0.0; then, if gage-size insta-

bilities appear, the "max-cut" parameter can be adjusted. Note that the user

must specify a separate "max-cut" parameter, DBAL, for mass balance variables. P
10.5.5 Termination of Redesign-Process

It has already been pointed out that an efficient design (close to the

optimum) can usually be achieved with fairly large step sizes provided the single-

ctep, normal-mode approach is employed. Once a flutter adequate design has been

obtained, the user should avoid excessive iterations within the flutter band

while striVing to effect a condition of uniform flutter-velocity derivatives.
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Experience has shown that such an approach can expend large amounts of conputing

time for small improvements in design efficiency. It is recommended, therefore,

that the redesign process be terminated when weight reductions from two or three

successive iterations are no longer significant from an engineering point of view.
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Section 11

EXAMPLES OF ANALYSIS RESULTS

11. SUW1ARY

Calculations to demonstrate the capability and versatility of the FASTOP

analysis package have been performed for three typical designs - a prelimin-
ary structures model of a simple cantilevered wirn and detailed rodels of an

all-movable stabilizer and a wing with a pylon-rounted external store.

The structures of all three surfaces were reprecented by finite-eleent

idealizations and the degrees of i.eedor of the structures models were re.-

duced to a lesser number of degrees of freedor required for the dynamics

models by a force bearing transformation procedure. The types of calcula-

tions performed include subsonic and supersonic aerodynaric 
load predictions,

inertial load predictions, load beaming to structural node points, determina-

tion of internal member loads and stress ratioc, formation of dynamics model

flexibility matrices, vibration mode anmlyjes, and subsonic and supersonic

flutter analyses using both the k rnd p-k solution procedures. Typical re-

sults obtained for the three demons.ration problems are presented and dis-

cussed.

11.2 DESCRIPTION OF DEMONSTRATION PROBLEMS

11.2.1 Structures Mogdel of the Interrediate Complexity Wing

The structi.'al idealization for the so-called "intermediate complexity wing"

is the simplest of the three demonstration cases selected and is representative

of a typical preliminary design configuration. The all-aluminum two-cell wing

box, illustrated in Figure 11.1, is modeled using 100 finite elements.

Membrane element . are used to represent the wing covers, shear Msnels repre-

sent the spar and rib webs, and bar elements are introduced between upper and

lower ccver node points. The wing root is built-in by fully constraining all

stru'ctural nodes on the root boundary. The structure has a total of 190 degrees

of freedor. cornrising 3 trancletional degrees of freedom at each structural

n. de point.

S
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11.2.2 Dynamics Model of the Intet'.ediate Complexity Wing

The 150 degrees of freedom of the structures model are transformed to

39 dynamic degrees of freedom using the force beaming procedures described

in Section 5. The selected dynamic degrees of freedom, indicated in Figure

11.2, include out-of-plane (z direction) displacements at all dynamic nodes,

these nodes being located between adjacent upper and lower cover structural

nodes in the mid-plane of the wing. The overhanging panels, representi,,g

the mass and moment of inertia of structure external to the wing box are

also included in the dynamics model. Their inertia effects are included

by introducing rotational degrees of freedom of each panel about an axis

parallel to its attaching structure i.e., front beam, rea- beam, or tip rib.

The local axis system for each pan.el is indicated in Figure 11.2.

11.2.3 Structures Model of the All-Movable. Stabilizer

The all-movable stabilizer model, shown in Figure 11.3, is representa-

tive of a complex detailed design configuration. A total of 891 finite

elements are used to model the stabilizer surface including its pivot and

actuator restraints. (The details of the pivot restraints and the actuator

are omitted from the figure to preserve clarity of presentation). It should f

be noted that the inner and outer stabilizer-to-pivot support points are

model.d ia -he mid-plane of the surface, enclosed by structural nodes 481,

483, 463, 461 and structural nodes 37, 381, 349, 347 respectively. The

stabilizer construction consists of titanium covers, modeled as membrane

elements, with an aluminum honeycomb core. The honeycomb core is modeled

3s sparwise and chordwise shear panel elements with stiffness properties

representative of the actual honeycomb structure. The model has a total of

1172 degrees of freedom.

11.2.2; Dynamics Model of the ll-Movable Stabilizer

The force beaming procedure, described in Section 5, is used to transform

the 1172 structural degrees of freedom of the stabilizer to 92 dynamic dewrees

of freedom. Vertical (out-of-plane) degrees ,f freedom are specified at the

73 dynamic node points shown in Figure 11.4, and additional rotational degrees

of freedom are specified at overhanging panel points, designated as points

1 through 13 and 65 through 72.
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11.2.5 Stnictures Model of the Wing-with-Storei

A second, but significantly different detailed design configuration is

the wing with external-store shown in Figure 11.5. The structural idealize-

tion of the multi-spar aluminum wing box uses warped quadrilateral membrane

/ZIelements to represent the wing covers and quadrilateral shear panels for rib

and spar webs. 2he semi-wing is modeled from the tip to the airplane center-

line and symmetric structural boundary conditions are specified for all nodes

in the plane of symmetry. The wing-to-fuselage connection is accomplished

with vertical shear attachments at nodes 37 and 47 and a drag attachment at

node 47. A wing-store pylon, modeled with beam elements, is attached to the

wing at nodes 175, 176, and 181, 182. The structural model has a total of

602 elements and 885 degrees of freedom.

1.1.2.6 Dynamics Model of the Wing-with-Store

The dynamics model, illuztrated in Figure 11.6, is schematically similar

to the two previous m(dela. However, for the wing-with-store there is an

additional requirement to include Pore-and-aft degrees of freedom at every

node to account for dynamic coupling between wing pitch and store t'ans-

lAtion. The store is allowed 5 degree3 of freedom and the dynamics model

contains a total of 136 degrees of freedom.

11.3 DISCUSSION OF ANALYSIS RESULTS OBTAINE) WITH FASTOP

11.3.1 Loads Analysis

Data pertaining to the basic aerodynamic characteristics of each surface,

plus a summary of flight conditions for which aerodynamic load distributions

were computed using FASTOP, are presented in Table 11.1. Two examples of

pressure distributions are presented for the intermediate-complexity-wing

demonstration zase. The first example (Figure 11.7) shows the s'ibsonic

pressure distribution for the Mach 0.9 flight condition noted in Table 11.1.

The pressures vere computed by the vortex-lattice aerodynamics routine des-

cribed in Section 3. The pressure distribution for the Mach 2.0 flight condi-

tion, computed by the supersonic source distribution aerodynamics routine, is

presented in Figure 11.8. In the supersonic case, the pressure is almost

S
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TAB~LE 11.1 BASIC WING DATA AUD SULIAY OF FLIGHT

* CUiTDITIONS FOR COMTEr1 AERODYNlAMIC LOADlS

Leading Number of
Aspect edge aircdynamicFlhtC dios

Model sweep panels used -_

ato angle to repre-lt Angle of

____ s ent wing Mach No. (ft.x10 3) Attack~

Intermediate 0.5 30 30

Ccnleiy 3.13 310 36 0.9 30 2
Wing 2.0 30 2

All-Movable 0.8 0 365
2.52 51 0 100

Stabilizer 1.3 10 9.00

Wig~it. 4.96 29 80.85 0 9.20 6
Store
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uniform in the mid-span region due to the almost two-dimensional flow char-

acteristics at high Mach number. The abrupt pressure reductions in the in-

board and tip regiuns of the wing occu.- at locations where the rcot and

tip Mach lines intersect the chords along which pressures have been computed.

jymmetric boundary conditions have been specified for both cases, although

loads may be optionally calculated for antisymmetric or asymmetric conditions.

FASTOP was also used to compute inertial load distributions for the in-

termediate complexity wing for translational and angular accelerations which

could correspond to the nerodynamic flight conditions of Table 11.1. The

weights model used for this purpose closely resembled the dynsmics model pre-

sented in Figure 11.2, except that overhanging panel mass and inertia prop-

erties were specified at panel c.g.'s in an unswept axis system. The results

of the inertial load analysis are in the form of inertial forces and moments

in the weights grid.

11.3.2 Structural Analysis ,

The structural analysis module was used for each example structure to

determine its level of strength adequacy and to establish its flexibility

characteristics for subsequent vibration analysis. Finite elemocnt sizes in

each structural idealization were sele.ted to be reasonable but Are regarded 0
as only preliminary.

The previously computed aerodynamic and inertial applied loads were

transformed to the structures models by using the procedures of Section 5,

and ratios of maximum working stress to allowable stress (stress ratios)

were computed for every finite element in each model. Since these stress

ratios are based on initial elemen sizes (for a non-fully-stressed design),

they are of little significance except to demonstrate the proper working of

the program.

II
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In the same analysis module, the structural stiffness matrices were
assembled. These were subsequently transformed i,,to dynamics rodel flexi-

bility ntrices by again utilizing the transformation procedures of Section 5.

11.3.3 Vibration Analysis

Vibration analysis mode shape plots for the three demonstrtic struc-

tures are presented in Figures 11.9-11.11. These plots were generated using

the CALCOMP plotter and associated software routines which are part of the

FASTOP system. In each case '..e plotted data consists of modal displace-

ments of the surface dynamic node points. A summary of the modal character-

istics of each demonstration structure appears in Table 11.2. Some perti-

cular features of the vibration analysis results follow.

The intermediate-complexity-wing mode shapes are typical for a simple

cantilevered structure. Winp torsion (Figure 1l.9b), which is thie second

mode, has a node line running spenwise, in close proximlty to the trailing

edge. Chordwise bending is evident in modes 2-4.

The stabilizer mode shapes (Figures ll.lOa-d) indicate the presence

of root rotational motion due to the pivot and actuator support flexibil-

ities. Because of this flexibility, the stabilizer has both a pitch mode,

in which the stabilizer rotates about its pivot (Figure l1.lOb), and a tor-

sion mode, in which the surface twists with virtually no pivot rotation

(Figure 11.lOd).

The mode shape plots 'or the wing-with-store example are pv.seisted in

: Figures ll.lla-f. The fore-aft deflections for the wing leading edge are

* included on a separate reference line located in the lower portion of each

figure. The hand plotted store motions, both translational and rotational,

are shown with respect to the undisplaced store position. The initial re-

quirement to make the wing flutter-critical was accomplished by defining

relatively high store mass and inertia properties. The re :ting high

stoz pitch inertia causes significant wing torsion in the stcre pitch rode,

sh.'wn ir Figure ll.llc.
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TABLE 11.2. SUM!ARY OF DE.VNSTRATION PROBLE,!

VIBRATION MODE CHARACTERISTICS

NlMode Mode Fiur
Model me freouency Mode description Figure

(Hz.)Ieiedae number (Hz.)c number ,0

Intermediate 1 20.58 First bending ll.9a
Complexity 2 49.66 First torsion l1.9b
Wing 3 71.83 Second bending 11.9c

4 93.90 Second torsion 11.9d

All 1 14.8 First bending 11.lOs

Movable 2 30.1 I'Ltch 11.lOb

Stabilizer 3 42.3 Second bending 11.lOc

4 52.2 Torsion 11.lOd

Wing-with- 1 4.63 Store yw 11.ll9

Store 2 5.04 Wing bending 11.l1b

3 6.11 Stcre pitch & ll.llc bwing torsion

4 7.0 Store lateral I.l1d

5 11.39 Wing second ii.lle
bending

12.49 Wing fore-aft 11.llf
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11.3.4 Flutter Analysis

All of the flutter plots presented in this section were obtained using

a CALCO.P plotting routine, which is an integral part of FASTOP. It should

be mentioned that this routine plots the data points using symbol identifi-

cation, while the curve fairing is a hand process.

The intermediate-complexity-ing flutter analysis for Mach 0.8, see

level, was performed using both the doublet-lattice and assumed-pressure-

f-nction procedures. The planform was idealized by 72 aerodynamic panels

in the doublet-lattice approach and the chordwise and spanwise polynomials

assumed for the pressure-function method were 3rd and 6th degree, respec-

tively. Flutter results for both aerodynamic representations using the k-

method of solution are presented in Figures 11.12 and 11.13. An additional

analysis that uses the doublet-lattice approach and the p-k nethod of solu-

tion is presented in Figure 11.14. All three analyses yield almost identical

flutter speeds. However, the subcritical frequency and damping trends differ.

In particular, the frequency coalescence of the bending and torsion modes,

which causes the flutter instability, is more evident in the results from the

p-k method of solution.

The flutter analysis of the all-movable stabilizer was performed usirg

the Mach-box method for a Mach number of 1.6 and an altitude of 30,000 feet.

The aerodynamic surface was represented by 334 rectangular boxes and the free-

stream diaphragm region, defined by the aft Mach line from the outboard tip

of the leading edge and the forward Mach line from the outboard tip of the

trailing edge, was represented by two diaphragm boxes. The small number of

required diaphragm boxes concentrated in the tip region is e.-plained by the
fact that both the leading and trailing edges of the stabilizer are supersonic

at Mach 1.6. The flutter analysis results, presented in Figures .l.J15a,b

show that the flutter mechanism is caused by a coupling between the stabilizer

bending and pitch modes.

Flutter analyses of the wing-with-store, using the doublet-lattice

method, are presented in Figures 11.16 a, b. The results, computed for

TS
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Mach 0.8, sea level, clearly show a number of store modes with very low aero-

dynamic damping. The lowest flutter instability occurs at 330 knots equiva-

lent airspeed and is caused by coupling between the first wing bending mode

and the store pitch mode. The damping trend of the critical root is char-

acteristic of the "grazing" instabilities encountered In store flutter

problems.
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Section 12

EXAMPLES OF OPTIMIZATION RESULTS

12.1 SUMMARY

Calculations to demonstrate the redesign capability of FASTOP have been per-

formed using the intermediate ccmaplexity wing, all-movable stabilizer, and wing-

with-store models. The characteriatics of these models are described in Sec-

tion 11. The cantilever-structure dynamics model of the wing-with-store, des-

cribed in Section 1, was converted to a free-free model for flutter redesign.

This was done to fully demonstrate FASTOP's redesign capabilities for a con-

figuration where dynamic interaction between the wing and fuselage might be

important. The details of the changes that were made to the dynamics model are

included in the discussion of wing-with-store redesign results.

Initially, the strength optimization portbon of FASTOP was used to obtain

a fully stressed design (FSD) for each demonstration structure. In order to

accomplish this calculation, it was necessary to specify flight design load condi-

tions for the loads analysis module, initial member sizes in the strength optimi-

zation module, and force beaming data tequired for "he transformation analysis

module. The latter z-roup of data was needed to create transformation matrices

from the aerodyna mics and dynamics mathematical models to the structures mathe-

matical model. Thus in the initial FASTOP application the design loads were com-

puted, these were then beamed to the structures model and the structure was re-

sized for strength. The analysis terminated with computation of a flexibility

matrix for the dynamics model. The subsequent redesign to achieve a specified

flutter speed improvement was achieved through multiple sequential submissions of

the two major programs of 1ASTOP - the structural optimization program and the

flutter optimization program. Except when otherwise noted, strength redesign was

accomplished after each flutter redesign cycle to account for interaction between

flutter and strength requirements.

Results of redesign studies'using the two cantilever - structure models

and the free-free model are presenttJ and discussed below.
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12.2 DISCUSSION OF REDESIGN RESULTS S

12.2.1 Intermediate Complexity Win!!

Two aerodynamic design load conditions were specified for the intermed-

iate - complexity wing, namely, M = 0.5, sea level, a = 380, and M = 0.9, sea

level, of 9.30. Uniform initial gages (0.16 in.) were selected for all 100 5
elements of tne structures model, and a minimum manufacturing gage of 0.02 in.

was specified for all cover, rib web, and spar web elements. The structure

was resized for strength in five FSD cycles resulting in a weight reduction of

the idealized structure from 143.0 lb. to 61.1 lb. Adequate convergence to a

fully stressed design was indicated by the weight change in the fifth redesign

cycle, which was only 0.1% of the total final weight. The final gage sizes of

the fully stressed structure are presented in Figure 12.1.

This initial application of the strength optimization program terminated
with the computation of a flexibility matrix for the dynamic.s model. Dynamics-

model mass data corresponding to the selected degrees of freedom were then calcu-

lated by applying realistic nonoptimum factors to the weight of the fully stressed

wing-box structure and also by separately accounting for the weight of the over-

hanging structure not included in the finite element model (see figure 11.2). The

resulting total wing weight was 187.3 lbs. compared with 61.1 lbs. for the ideal- 5 0
ized primary structure.

Flutter resizing was performed using all 100 elements of the structures

model as flutter redesign variables. Flutter analyses performed in the flutter

optimization program utilized the doublet-lattice unsteady aerodynamics routine

and the p-k solution procedure. The flutter-critical flight condition was d6sig-

nated as Mach 0.8, sea level.

The required flutter speed increment from the fully-stressed design point

was bpecified to be 30% with an acceptable flutter speed band of 30-31%. It was

decided to achieve the desired flutter speed in four combined strength/flutter

redesign cycles (user input). In all subsequent redesign cycles the mid-band

flutter speed (30.5%) was automatically selected as the target value. The design

steps, indicated in Figure 12.2, show convergence to the design optimum in eight

cycles, although a design very close to the optimum point was achieved after only

four cycles.
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Note: Gage sizes Li inches. .020 .020 .020 .020

o. 042 /.023 .020/ .020

.00 020 .020 .020 .2

.02/0* .5 .2

I0

C.0 .05 .5 i .09 .0

*.03 1 .030 .020 / .020

.07.

Figure 12.1 Gage Sizes for Fully-Stressed Design
Ihtermediate-Comiplexity Wing.
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Figure 12.3 shows the distribution of the total weight added to flutter- --

critical elements in the final design. Also shown are the final gages of the

flutter-critical elements. It is interesting to not~e that the weight added to

the second bay inboard from the tip accounts for approximately half of the total

weight increment.

The level of uniformity of the final flutter-velocity derivatives of the
critical members may be observed in Figure 12.4, which also shows the original

values of these derivatives for the fully stressed design. The tabular summary

of final design data (Table 12.1) indicates that only 0.6 lbs. of structural weight S
was eliminated from the strength-critical structure in the course of redL)sig-,.

Thus the resizing required for flutter had only a secondary effect on the struc-

ture's internal load distribution.

It should be noted that strength resizing may be option.ally by-passed in

any resizing cycle when it is apparent that strength-flutter interaction is insig-

nificant. In this particular calculation, strength resizing was .ccomplished in

each cycle simply to demonstrate the total program capability.

12.2.2 All-Movable Stabilizer

All-movable stabilizer design load distributions were computed for two

flight conditions: M = 0.8, sea level, o = 16.50, and M = 1.3, 10,000 ft.,
= 9.00, and the preliminiry gages of the structures-model were resized for

strength in five FSD cycles. Since the chordwise and spanwise shear panel

elements in the stabilizer structures model simulated the stiffness properties

of an aluminum honeycomb core, thcy could not be logically resized for either

strength or flutter requirements. Consequently they were eliminated from the

redesign process by setting their maximum and minimium manufacturing gages equal

to their initial gages. The weight of the idealized structure was reduced by
i p

15% (39.5 lbs.) in strength redesign. The initial strength-optimization program
analysis terminated with the computation of a flexibility matrix for the 92

degrees of freedom selected for the dynamics model (see Figure 11.4).

The dynemics model mass matrix was then calculated by applying non-

optimum factors to the weights of all the finite elements in the structures model 5
and then distributing theze weights to the selected dynamic points. This hand

calculation was performed by a weights engineer.
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Note: Percentages shown for
cover-skin elements are
for one cover only.

S .150.115 0.07 0.08 0%
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Figure 12.3 Distribution of Total Weight Increase for 30%
Flutter-Speed Improvement and Final
Gages - After Redesign fcr Intermediate
Complexity Wing
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TABLE 12.1 -FINAL DESIGN DATA FOR THE -

INTERMEDIATE-CCO1PLEXITY WING AND
ALL-MOVABLE STABILIZE DEMONSTRATION

PROBLEMS

WEIGHT IN POUNDS _

INTERMEDIATE- ALL-MOVABLE
COMPLEXITY WING STABILIZER

Weight of finite element model -
preliminary sizing of members 143.0 259.7

- - - after FSD 61.1 220.2 5

Total weight of FSD structure
including non-optimum factors 187.3

Total weight increment of Structure = 3.71
flutter-critical elements 14.76
from FSD (final design) Mass balance = 6.78

Total weight change of strength- -0.60 -0.24
critical elements from FSD

Total weight increment from 14.16 10.25
FSD

S
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A supersonic flutter-critical flight condition, Mach 1.6, 30,000 ft, was

selected for flutter redesign with the design goal being a 25% increase in flutter

speed. Two separate studies were then performed, one using both structural and

mass balance design variables and the other using only structural design variables.

In the former case, 3 lbs. of initial mass balance was arbitrarily added at each
of three selected mass balance locations (see Figure 12.5). Reasonably large

values of mass were selected to avoid the possibility, observed in previous

studies, of mass balance being ineffective for low initial values even though it

becomes effective for larger values.

The results of the combined strength/flutter redesign study, including mass

balance variables, showed that the mass balance at point B was increased beyond

its initial value whereas the masses at points A and C were progressively elimi-

nated. It was obvious, after the third flutter redesign cycle that the mass

balance at points A and C wuuld be zero in the final design; it was decided there-

fore to override the existing program values and set them equal to zero at this

design point. This had the effect of accelerating convergence to the design opti-

mum point.

It is seen in Figure 12.6 that a near optimum design with combined, structural

and mass-balance variables was achieved after only five flutter redesign cycles.
The net weight increase to achieve .t 25% increase in flutter speed was only 10.7

lbs or 2.58%. A further three redesign cycles beyond this point eliminated an

additional 0.5 lbs., a relatively insignificant amount. The dstribution of mass

balance and structural weight in the final design is presented in Figure 12.7.

The standard deviation of flutter-velocity derivatives for the nine flutter criti- 4
cal elements in the final design was 0.33 knots/lb with a rean value of 17.7 loots/

lb. A summary of final design data is presented in Table ]2.1 wherein it is noted
that resizing for strength (a single cycle of FSD in each combined resizing cycle)

resulted in a very small reduction in the weight of the strength-critical struc-

ture.

The second all-movable stabilizer study, which used only structural de-

sign variables, indicated that the flutter effectiveness of the structural ele-

ments in the tip regicn was governed by their mass-balance effzct, i.e., the

kinetic-energ'-density contribution was dominant. FASTOP therefore resized these

elements to achieve a mass balance effect similir to that noted in the previous

study. Since the initial values for the .ass of these .ininum gaqe strictural
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elements was very small, it became apparent that convergence to the opcimum com-

bination of "mass balance" and structural stiffness would be slow (see Figure

12.6). Consequently, redesign was terminated before convergence was achieved.

This case illustrates a fact noted in previous studies using FASTOP, namely that

the convergence for flutter cases that are susceptible to mass balance is much

enhanced if the user initiates redesign with arbitrary selections of mass balance

in potentially effective regions of the structure.

To provide a further base of reference for the two studies described abo;-c:,

a final analysis was performed using mass balance alone at the most effective

location indicated by FASTOP, i.e., the tip leading-edge. It was determined that

14.7 lb. of mass balance would be required to achieve the 25% flutter speed in-

crease, compared with 10.25 lb. for the combined redesign case (see Figure 12.6).

12.2.3 Win-with-Store

Conversion of the cantilever.structure dynamics model of the wing-with-

store (see Figure 11.6) to a free-free model was achieved by including beam

elements to simulate the stiffness properties oZ the fuselage in vertical bending. p
The fuselage modelling is schematically illustrated in Figure 12.8 in which it is

noted thtt fifteen elements were used to represent the fuselage and ten ,aem ale-

ment node points were selected as dynamic node points for vibration analysis.

Thus the modified vibration model had a total of 158 dynamic degrees of freedom

plus three plug (rigid body) degrees of freedom.

The preliminary gages of the finite element structures model were resized

for strength in five FSD cycles using two computed subsonic aerodynamic design

load distributions and one store inertial load condition. The weight of the re-

sulting fully-stressed structure was 1340 lbs., based on the finite element ideal-

i.ation, and 1921 lbs., including non-optimum factors and overhangirg structure.

The pylon-mounted store weighed 4500 lbs. with a pitch inertia of 8 x 106 
lb. in2

about its center of gravity. The high store inertia created a c'itical

flutter mechanism involving the first wing bending mode and the store-pitch/wing-

torsion mode. A Mach 0.8, sea level flutter-critical flight condition was de-

signated for the redesign studj. The objective was to acl,ieve a '!utter speed

target of 660 knots equivalent airspeed from an initial computed value of 270 knots

for the fully stressed design. Wing posts anki fuselage be.am elements were excluded

from strength/flutter redesign resulting in a total of 433 struttural design

variables for this study.
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The for'ard besm of the pylon support structure, connecti.n; :.o-las I"'( "''

1-7 (See Figure 11.5) had the hi;hest flut'er velocit:; derivative in the i:.itial

design (236 k:.ots'lb.) and the beam element which continued the forward rer C

ccnrection through the lower and upper wing covers (nodes 176-175) had the

second hii-hest derivatihe (97 knots/lb.). The rear beam of the pylon, which

had 3 flutter velocity derivative of' -1I.5 knots/lb., was not resized downward

because of minimum gage constraints. As redesign proceeded, the front a: d rear

beams of the pylon became enually flutter-effective. ..:i s chanpe was aceo.'nc'-

ied by a noticeaole cha:.re in the flutter mode shape, whic.i initial 1:; involved

components of the first wing bending mode and the store-pitcb/wing-torsion mode,

but later exhibited increasingly large components of the second winag bending

mode as the store pitch frequency was increased. A net reduction in structural

weight was achieved in the first combined flutter-strenpth redesign cycle

(Figure 12.9) due to the fact that the initial fully stressed design was not

fully converged (i.e., the stress ratios were not unity) and the subsequert

strength redesign further reduced the weight of the structure in regions which

were ineffective for flutter. Thus, the net weight reduction of 0.95 lb. in

the first redesign cycle comprised an addition of 0.3h lb. for flutter speed

improvement and a reduction of 1.29 lb. in the strength-critical regions of

the structure. *
Redesign for flutter appeared to be directed toward increasing the fre-

quency of the store pitch mode and no structural elements were resized outboard

of the wing store station. Resizing of wing structural elements inboard of the

store station involved spar webs and the rib webs between the wing-to-pylon

connection points (Figure 12.10). the resizing in the vicinity of the front

wing-to-fuselage connection point accounted for a relatively small proportion :
of the overall weight increase. One of the most interesting results of this

study was that the shear rigidity of th- forward and rear spars was shown to

be a more significant contributor to the overall store pitch stiffness than

the wing covers.

Convergence to the final design point was achieved in eight combined

flutter-strength redesign cycles (Figure 12.9), althouph a design very close

to optimaun was achieved after six cycles. The flutter speed target was achieved

for only 8.h2 lbs increase in weight. The distribution of this weight is tab-

ulated below: K
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Totnl weight increase for flutter-critical elerents X 10.35 lb.

(Weight increase for pylon alone X 6.55 lb.)

Weight removed from strength-critical structure 1.93 lb.

Total weight increase from FSD starting point a 8.42 lb.

Although the net reduction in weight of the strength-critical structure was

relatively insignificant, a redistribution of cover material wab noted in theI

inboard wing sections. Consequently strength resizing (1 FSD cycle) was I,.

acccv.plished in all but two of the redeaign cycles. In the other tvo cycles,

SOP was simply used to recompute a revised flexibility matrix for vibraton

mode calculations.

A second redesign study uas initiated ucIng beth structural design variables

and three mass balance design variables located at dynamic nodes 6, 9, and 55

(see Figure 11.6). Twenty pounds of mass balance was arbitrarily added at each

dynamic node before initiating redesign. The flutter speci cf the fully stressed

design increased from 270 knots to 290 knots as a result of this mass addition.

It was noted that the initial flutter-velocity derivatives of .911 masses were

very close to zero. Consequently they were eliminated in the subsequent re-

design aralysis.
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